Date:

Study shows how microorganisms survive in harsh environments

In northern Chile’s Atacama Desert, one of the driest places on Earth, microorganisms are able to eke out an existence by extracting water from the rocks they colonize.

An Army-funded project by researchers at the University of California, Irvine, Johns Hopkins University and University of California, Riverside gained an in-depth understanding of the mechanisms by which some cyanobacteria, an ancient group of photosynthetic microbes, survive in harsh environments.

- Advertisement -

The new insights, published in Proceedings of the National Academy of Sciences, demonstrate how life can flourish in places without much water in evidence – including Mars – and how people living in arid regions may someday be able to procure hydration from available minerals.

“The Army has a strong interest in how microorganisms well-adapted to extreme environments can be exploited for novel applications such as material synthesis and power generation within these harsh fielded environments,” said Dr. Robert Kokoska, program manager, Army Research Office, an element of U.S. Army Combat Capabilities Development Command’s Army Research Laboratory. “This study provides valuable clues for uncovering the evolved design strategies used by these native desert-dwelling microbes to maintain their viability in the face of multiple environmental challenges.”

Through work in the field and laboratory experiments, the research team focused on the interactions of Chroococcidiospsis, a desiccation-resistant species of cyanobacteria that is found in deserts around the world, and gypsum, a water containing calcium sulfate-based mineral. The colonizing lifeforms exist beneath a thin layer of rock that gives them a measure of protection against the Atacama’s extreme temperature, high solar irradiance and battering winds.

Co-author Jocelyne DiRuggiero, JHU associate professor of biology, traveled to the remote desert to collect gypsum samples and brought them back to her labs in the United States. She cut small pieces, where microorganisms could be found, and sent them to UCI for materials analysis.

- Advertisement -

In one of the most striking findings of the study, the researchers learned that the microorganisms change the very nature of the rock they occupy. By extracting water, they cause a phase transformation of the material – from gypsum to anhydrite, a dehydrated mineral.

According to DiRuggiero, the impetus for the published work came when Wei Huang, a UCI post-doctoral scholar in materials science & engineering, spotted data showing an overlap in concentrations of anhydrite and cyanobacteria in the gypsum samples collected in the Atacama.

“Our analysis of the regions of rock where microbes were colonized revealed a dehydrated phase of calcium sulfate, suggesting that they extract water from the rock to survive,” said David Kisailus, lead author and UCI professor of materials science & engineering. “We wanted to do some more controlled experiments to validate that hypothesis.”

DiRuggiero’s team then allowed the organisms to colonize half-millimeter cubes of rocks, called coupons, under two different conditions, one in the presence of water, to mimic a high-humidity environment, and the other completely dry. In the midst of moisture, the gypsum did not transform to the anhydrite phase.

“They didn’t need water from the rock, they got it from their surroundings,” Kisailus said. “But when they were put under stressed conditions, the microbes had no alternative but to extract water from the gypsum, inducing this phase transformation in the material.”

Kisailus’ team used a combination of advanced microscopy and spectroscopy to examine the interactions between the biological and geological counterparts, finding that the organisms bore into the material like tiny miners by excreting a biofilm containing organic acids, Kisailus said.

Huang used a modified electron microscope equipped with a Raman spectrometer to discover that the organisms used the acid to penetrate the rock in specific crystallographic directions – only along certain planes where they could more easily access water existing between faces of calcium and sulfate ions.

Kisailus said the project was a great demonstration of interdisciplinary research between microbiologists and materials scientists that may, one day, open doors to other forms of scientific discovery.

“Scientists have suspected for a long time that microorganisms might be able to extract water from minerals, but this is the first demonstration of it,” DiRuggiero said. “This is an amazing survival strategy for microorganisms living at the dry limit for life, and it provides constraints to guide our search for life elsewhere.”

Researchers said this study can benefit the Army Research Lab’s efforts in synthetic biology.

“These findings have drawn the interest of our lab as microbial survival mechanisms can be leveraged for biomanufacturing or sensing platforms in harsh military environments,” said Dr. Matthew Perisin of the lab’s biotechnology branch.

U.S. ARMY RESEARCH LABORATORY

Header Image – In Northern Chile’s Atacama Desert, one of the driest places on Earth, microorganisms live beneath thin layers of rock to gain some protection from harsh winds and solar radiation. Water, although limited, is stored as a structural element within these rocks. Credit : David Kisailus, University of California – Irvine

- Advertisement -

Stay Updated: Follow us on iOS, Android, Google News, Facebook, Instagram, Twitter, Threads, TikTok, LinkedIn, and our newsletter

spot_img
Mark Milligan
Mark Milligan
Mark Milligan is a multi-award-winning journalist and the Managing Editor at HeritageDaily. His background is in archaeology and computer science, having written over 8,000 articles across several online publications. Mark is a member of the Association of British Science Writers (ABSW), the World Federation of Science Journalists, and in 2023 was the recipient of the British Citizen Award for Education, the BCA Medal of Honour, and the UK Prime Minister's Points of Light Award.
spot_img
spot_img

Mobile Application

spot_img

Related Articles

Preserved 3rd century mosaic excavated in Iznik

Excavations in the İznik district of northwestern Türkiye have uncovered a preserved mosaic floor dating from the 3rd century AD.

Time capsule of medieval artefacts unearthed in Łasztownia excavation

Archaeologists have unearthed a time capsule of medieval artefacts on the island of Łasztownia in Szczecin, Poland.

Mask reliefs unearthed during Castabala excavations

Archaeologists have unearthed a new series of mask reliefs during excavations in the ancient city of Castabala, Turkey.

Bronze Age proto-city discovered on the Kazakh Steppe

Archaeologists have discovered a late Bronze-Age proto-city on the Kazakh Steppe in north-eastern Kazakhstan.

Altamura Man resolves long-standing debate over Neanderthal evolution

A preserved Neanderthal fossil is providing new insights into how this ancient human species adapted to the cold climates of Ice Age Europe.

Evidence of lost Celtiberian city beneath Borobia 

The rediscovery of a funerary stele has provided new evidence of a lost Celtiberian City beneath the municipality of Borobia in the province of Soria, Spain.

Viking Age grave unearthed in Bjugn stuns archaeologists

A routine day of metal detecting led into one of Norway’s most captivating archaeological discoveries in years.

Ornately decorated medieval spears found in Polish lake

Underwater archaeologists from Nicolaus Copernicus University have uncovered four remarkably well-preserved medieval spears in the waters around Ostrów Lednicki, an island in the southern section of Lake Lednica in Poland.