Date:

How gene flow between species influences the evolution of Darwin’s finches

Despite the traditional view that species do not exchange genes by hybridisation, recent studies show that gene flow between closely related species is more common than previously thought.

A team of scientists from Uppsala University and Princeton University now reports how gene flow between two species of Darwin’s finches has affected their beak morphology. The study is published today in Nature Ecology and Evolution.

- Advertisement -

Darwin’s finches on the Galápagos Islands are an example of a rapid adaptive radiation in which 18 species have evolved from a common ancestral species within a period of 1-2 million years. Some of these species have only been separated for a few hundred thousand years or less.

Rosemary and Peter Grant of Princeton University, co-authors of the new study, studied populations of Darwin’s finches on the small island of Daphne Major for 40 consecutive years and observed occasional hybridisation between two distinct species, the common cactus finch and the medium ground finch. The cactus finch is slightly larger than the medium ground finch, has a more pointed beak and is specialised to feed on cactus. The medium ground finch has a blunter beak and is specialised to feed on seeds.

“Over the years, we observed occasional hybridisation between these two species and noticed a convergence in beak shape. In particular, the beak of the common cactus finch became blunter and more similar to the beak of the medium ground finch,” say Rosemary and Peter Grant. “We wondered whether this evolutionary change could be explained by gene flow between the two species.”

“We have now addressed this question by sequencing groups of the two species from different time periods and with different beak morphology. We provide evidence of a substantial gene flow, in particular from the medium ground finch to the common cactus finch,” explains Sangeet Lamichhaney, one of the shared first authors and currently Associate Professor at Kent State University.

- Advertisement -

“A surprising finding was that the observed gene flow was substantial on most autosomal chromosomes but negligible on the Z chromosome, one of the sex chromosomes,” says Fan Han, Uppsala University, who analysed these data as part of her PhD thesis. “In birds, the sex chromosomes are ZZ in males and ZW in females, in contrast to mammals where males are XY and females are XX.”

“This interesting result is in fact in excellent agreement with our field observation from the Galápagos,” explain the Grants. “We noticed that most of the hybrids had a common cactus finch father and a medium ground finch mother. Furthermore, the hybrid females successfully bred with common cactus finch males and thereby transferred genes from the medium ground finch to the common cactus finch population. In contrast, male hybrids were smaller than common cactus finch males and could not compete successfully for high-quality territories and mates.”

This mating pattern is explained by the fact that Darwin’s finches are imprinted on the song of their fathers so that sons sing a song similar to their father’s song and daughters prefer to mate with males that sing like their fathers. Furthermore, hybrid females receive their Z chromosome from their cactus finch father and their W chromosome from their ground finch mother. This explain why genes on the Z chromosome cannot flow from the medium ground finch to the cactus finch via these hybrid females, whereas genes in other parts of the genome can, because parents of the hybrid contribute equally.

“Our data show that the fitness of the hybrids between the two species is highly dependent on environmental conditions which affect food abundance,” says Leif Andersson of Uppsala University and Texas A&M University. “That is, to what extent hybrids, with their combination of gene variants from both species, can successfully compete for food and territory. Therefore, the long-term outcome of the ongoing hybridisation between the two species will depend on environmental factors as well as competition.”

“One scenario is that the two species will merge into a single species combining gene variants from the two species, but perhaps a more likely scenario is that they will continue to behave as two species and either continue to exchange genes occasionally or develop reproductive isolation if the hybrids at some point show reduced fitness compared with purebred progeny. The study contributes to our understanding of how biodiversity evolves,” Andersson concludes.

UPPSALA UNIVERSITY

Header Image – Public Domain

- Advertisement -

Stay Updated: Follow us on iOS, Android, Google News, Facebook, Instagram, Twitter, Threads, TikTok, LinkedIn, and our newsletter

spot_img
Mark Milligan
Mark Milligan
Mark Milligan is a multi-award-winning journalist and the Managing Editor at HeritageDaily. His background is in archaeology and computer science, having written over 8,000 articles across several online publications. Mark is a member of the Association of British Science Writers (ABSW), the World Federation of Science Journalists, and in 2023 was the recipient of the British Citizen Award for Education, the BCA Medal of Honour, and the UK Prime Minister's Points of Light Award.
spot_img
spot_img

Mobile Application

spot_img

Related Articles

Six “spooky” places across the UK to visit this Halloween

The UK is steeped in centuries of folklore, ghost stories, and eerie traditions. Castles, catacombs, and forests whisper tales of restless spirits and long-forgotten rituals, making the country a perfect destination for Halloween adventurers.

Lakes in the Gobi Desert nurtured human life 8,000-years-ago

According to a new study published in the journal PLOS One, the Gobi Desert, now one of the driest and most forbidding places on Earth, was once a land of lakes and wetlands that sustained human life over 8,000-years-ago.

Hundreds of celtic coins and jewellery unearthed in Western Bohemia

Archaeologists have announced one of the most significant Celtic discoveries in recent years: around 500 gold and silver coins, along with jewellery and raw precious metals dating from the 6th to the 1st century BC.

Blue pigment found in Germany rewrites Palaeolithic history

The discovery of Europe's oldest blue pigment at Mühlheim-Dietesheim in Germany rewrites the timeline of Palaeolithic colour exploration to 13,000 years ago.

Ancient satyr mask sheds light on Phanagoria’s dramatic past

The discovery of a terracotta theatrical mask offers compelling new evidence for the existence of a theatre in the ancient Greek city of Phanagoria.

Underwater study reveals exceptionally well-preserved Roman shipwreck

A multi-national team of underwater archaeologists have been unearthing an exceptionally well-preserved Roman shipwreck in Barbir Bay near Sukošan, Coatia.

Neo-Assyrian winged bull could be largest ever found

Archaeologists have unearthed the remains of what could be the largest known Neo-Assyrian lamassu – a protective deity depicting a winged bull with a human head.

Mollusc shells are unlocking the secrets of Ancient Egypt’s Saqqara necropolis

Mollusc shells unearthed during excavations at the Saqqara necropolis are offering new insights into the customs and daily life of the region’s ancient inhabitants.