Date:

Researchers uncover a previously unknown mass extinction event in Africa

Sixty-three percent. That’s the proportion of mammal species that vanished from Africa and the Arabian Peninsula around 30 million years ago, after Earth’s climate shifted from swampy to icy. But we are only finding out about it now.

Compiling decades of work, a new study published this week in the journal Communications Biology reports on a previously undocumented extinction event that followed the transition between the geological periods called the Eocene and Oligocene.

- Advertisement -

That time period was marked by dramatic climate change. In a reverse image of what is happening today, the Earth grew cooler, ice sheets expanded, sea levels dropped, forests started changing to grasslands, and carbon dioxide became scarce. Nearly two-thirds of the species known in Europe and Asia at that time went extinct.

African mammals were thought to have possibly escaped unscathed. Africa’s mild climate and proximity to the Equator could have been a buffer from the worst of that period’s cooling trend.

Now, thanks in great part to a large collection of fossils housed at the Duke Lemur Center Division of Fossil Primates (DLCDFP), researchers have shown that, despite their relatively balmy environment, African mammals were just as affected as those from Europe and Asia. The collection was the life’s work of the late Elwyn Simons of Duke, who scoured Egyptian deserts for fossils for decades.

The team, comprising researchers from the United States, England, and Egypt, looked at fossils of five mammal groups: a group of extinct carnivores called hyaenodonts, two rodent groups, the anomalures (scaly-tail squirrels) and the hystricognaths (a group that includes porcupines and naked mole rats), and two primate groups, the strepsirrhines (lemurs and lorises), and our very own ancestors, the anthropoids (apes and monkeys).

- Advertisement -

By gathering data on hundreds of fossils from multiple sites in Africa, the team was able to build evolutionary trees for these groups, pinpointing when new lineages branched out and time-stamping each species’ first and last known appearances.

Their results show that all five mammal groups suffered huge losses around the Eocene-Oligocene boundary.

“It was a real reset button,” said Dorien de Vries, a postdoctoral researcher at the University of Salford and lead author of the paper.

After a few million years, these groups start popping up again in the fossil record, but with a new look. The fossil species that re-appear later in the Oligocene, after the big extinction event, are not the same as those that were found before.

“It’s very clear that there was a huge extinction event, and then a recovery period,” said Steven Heritage, Researcher and Digital Preparator at Duke University’s DLCDFP and coauthor of the paper.

The evidence is in these animals’ teeth. Molar teeth can tell a lot about what a mammal eats, which in turns tells a lot about their environment.

The rodents and primates that reappeared after a few million years had different teeth. These were new species, who ate different things, and had different habitats.

“We see a huge loss in tooth diversity, and then a recovery period with new dental shapes and new adaptations,” said de Vries.

“Extinction is interesting in that way,” said Matt Borths, curator of Duke University’s DLCDFP and coauthor of the paper. “It kills things, but it also opens up new ecological opportunities for the lineages that survive into this new world.”

This decline in diversity followed by a recovery confirms that the Eocene-Oligocene boundary acted as an evolutionary bottleneck: most lineages went extinct, but a few survived. Over the next several millions of years, these surviving lines diversified.

“In our anthropoid ancestors, diversity bottoms out to almost nothing around 30 million years ago, leaving them with a single tooth type,” said Erik R. Seiffert, Professor and Chair of the Department of Integrative Anatomical Sciences at the Keck School of Medicine of the University of Southern California, a former graduate student of Simons, and senior coauthor of the paper. “That ancestral tooth shape determined what was possible in terms of later dietary diversification.”

“There’s an interesting story about the role of that bottleneck in our own early evolutionary history,” said Seiffert. “We came pretty close to never existing, if our monkey-like ancestors had gone extinct 30 million years ago. Luckily they didn’t.”

A rapidly changing climate wasn’t the only challenge facing these few surviving types of mammals. As temperatures dropped, East Africa was pummeled by a series of major geological events, such as volcanic super eruptions and flood basalts – enormous eruptions that covered vast expanses with molten rock. It was also at that time that the Arabian Peninsula separated from East Africa, opening the Red Sea and the Gulf of Aden.

“We lost a lot of diversity at the Eocene-Oligocene boundary,” said Borths. “But the species that survived apparently had enough of a toolkit to persist through this fluctuating climate.”

“Climate changes through geological time have shaped the evolutionary tree of life,” said Hesham Sallam, founder of the Mansoura University Vertebrate Palaeontology Center in Egypt and coauthor of the paper. “Collecting evidence from the past is the easiest way to learn about how climate change will affect ecological systems.”

DUKE UNIVERSITY

- Advertisement -

Stay Updated: Follow us on iOS, Android, Google News, Facebook, Instagram, Twitter, Threads, TikTok, LinkedIn, and our newsletter

spot_img
Mark Milligan
Mark Milligan
Mark Milligan is a multi-award-winning journalist and the Managing Editor at HeritageDaily. His background is in archaeology and computer science, having written over 8,000 articles across several online publications. Mark is a member of the Association of British Science Writers (ABSW), the World Federation of Science Journalists, and in 2023 was the recipient of the British Citizen Award for Education, the BCA Medal of Honour, and the UK Prime Minister's Points of Light Award.
spot_img
spot_img

Mobile Application

spot_img

Related Articles

Roman-era Mithras sanctuary discovered in Regensburg’s Old Town

Archaeologists have uncovered an extraordinary Roman-era sanctuary dedicated to the god Mithras in the historic centre of Regensburg - the oldest such site ever identified in Bavaria and the first Roman sanctuary discovered in the city’s old town.

4,000-year-old mural reveals complex worldview of ancient Peru

The discovery of a 4,000-year-old three-dimensional polychrome mural at Huaca Yolanda has been recognised by international journals as one of the most significant archaeological finds of 2025.

Plane wreckage found on Antarctic island

Bulgarian scientists have uncovered the remains of an Argentine Air Force aircraft that crashed in 1976 near Bernard Point on Livingston Island in the South Shetland Islands.

1,300-year-old world chronicle unearthed in Sinai

A newly identified Christian world chronicle dating to the early 8th century is shedding fresh light on the political and religious upheavals that marked the transition from late antiquity to the rise of Islam.

Archaeologists find evidence of Hannibal’s war elephants in Spain

A small bone discovered in southern Spain may represent the first direct archaeological evidence of the war elephants used by Hannibal Barca during the Punic Wars.

Archaeologists unearth the buried history of Saint-Pierre

Archaeologists have been excavating in the Mouillage district of Saint-Pierre, Martinique, offering a rare glimpse into the city’s development from its early days to its destruction during the 1902 eruption of Mount Pelée.

Lost burial grounds rediscovered through folklore

A new study by Dr Marion Dowd, lecturer in archaeology at Atlantic Technological University (ATU), sheds light on Ireland’s cillíní - unconsecrated burial grounds used for babies that were stillborn, miscarried or who died at birth without been baptised.

Study finds over 630,000 ancient charcoal kilns in Poland

Researchers from the Polish Academy of Sciences have identified more than 630,000 ancient charcoal kilns in Poland, which form the basis on which technology grew, driving everything from toolmaking to early urban centres.