Reconstructing the New World monkey family tree

Related Articles

When monkeys landed in South America 37 or more million years ago, the long-isolated continent already teemed with a menagerie of 30-foot snakes, giant armadillos and strange, hoofed mammals.

Over time, the monkeys forged their own niches across the New World, evolved new forms and spread as far north as the Caribbean and as far south as Patagonia.

Duke University evolutionary anthropologist Richard Kay applied decades’ worth of data on geology, ancient climates and evolutionary relationships to uncover several patterns in primate migration and evolution in the Americas. The analysis appears online this week in the journal Molecular Phylogenetics and Evolution.

 

Today, more than 150 species of monkeys inhabit the New World, ranging in size from the pygmy marmoset, which weighs little more than a bar of soap, to the muriqui, a long-limbed monkey that tips the scales at 25 pounds.

“We know from molecular studies that the monkeys have their closest relatives in Africa and Asia — but that doesn’t explain how they got to South America, just that they did,” said Kay, a professor in the evolutionary anthropology department and division of earth and ocean sciences at Duke.

South America split from Africa long before monkeys evolved, and the scarcity of monkey ancestors in the North American fossil record makes a southward migration highly unlikely. That’s led scientists to speculate that the animals made the ambitious transatlantic crossing on a vegetation raft, perhaps hurled seaward by a powerful storm. Or, they could have hopped more gradually, using islands that now lie at the bottom of the ocean.

About 11 million years passed between their arrival and the first fossil evidence of monkeys in the Americas, leaving the details of their early evolution an unknown ‘ghost lineage.’ The humid, heavily forested environment of what is now the Amazon Basin has made both fossil formation and modern-day discovery difficult, but understanding what happened there is the key to New World monkey evolution.

“However they got to South America, they were evolving in the Amazon Basin, and from time to time they managed to get out of the basin,” Kay said. “So if you want to learn about what was going on in the Amazon, you have to look at its periphery.” Luckily, Kay said, scientists can do that in places like Chile and Patagonian Argentina, where he has worked collaboratively for the past quarter century.

“We know the Amazon has been warm and wet for a very long time, and that from time to time we got expansions and contractions of these climatic conditions, like an accordion.”

The Amazon Basin functioned as a reservoir of primate biodiversity. When climate and sea level were just right, the animals spread and new species emerged in peripheral regions — Patagonia, the Caribbean islands, Central America — where the geology was more conducive to fossil preservation. Kay has uncovered and meticulously studied the monkey fossils from these areas to piece together their evolutionary relationships.

“The gold standard is molecular evidence,” he said. By sequencing the DNA of living monkeys, scientists have come to a clear consensus of how the different species and genera are related. But genetic material deteriorates, so researchers studying extinct species must rely on a proxy: the minute differences in shape, size and structure in fossilized bones. “It’s the only tool we have,” said Kay, but “it does a pretty good job.”

Kay studied 399 different features of teeth, skulls and skeletons from 16 living and 20 extinct monkey species from South America and Africa. Then, using software that reconstructs evolutionary relationships, he built a family tree. He compared that to a second tree, built strictly from the molecular studies of living species, to see if the two types of studies affirmed or contradicted one another. Except for a few cases, the trees looked remarkably similar, validating conclusions based on the anatomy of fossils.

Kay also looked at how long-term changes in South America’s ancient climate, mountain-building and fluctuating sea levels might make sense of the evolutionary pattern revealed by the monkey fossils. His research zeroes in on when and how monkeys extended their ranges to the Caribbean islands and the far southern end of South America, which is thousands of miles south of where they now live and only 600 miles from Antarctica.

The analysis further explains why the lineages that evolved outside the Amazon Basin were evolutionary dead ends. When the climate in Patagonia, for instance, turned cool and arid, the primates there went extinct, leaving no living descendants. Within the past 6,000 years, monkeys of the Caribbean islands also went extinct as a result of the appearance of humans and/or sea level rise. The paper suggests these monkeys came from South America rather than Central America, floating there by chance, the same way their ancestors crossed the Atlantic.

Contributing Source : Duke University

Download the HeritageDaily mobile application on iOS and Android

More on this topic

LATEST NEWS

10 British Iron Age Hill Forts

A hill fort is a type of earthworks used as a fortified refuge or defended settlement, located to exploit a rise in elevation for defensive advantage.

Stabiae – The Roman Resort Buried by Mount Vesuvius

Stabiae was an ancient Roman town and seaside resort near Pompeii, that was largely buried during the AD 79 eruption of Mount Vesuvius in present-day Italy.

Astronomers Accurately Measure the Temperature of Red Supergiant Stars

Red supergiants are a class of star that end their lives in supernova explosions. Their lifecycles are not fully understood, partly due to difficulties in measuring their temperatures. For the first time, astronomers develop an accurate method to determine the surface temperatures of red supergiants.

Researchers Overturn Hypothesis That Ancient Mammal Ancestors Moved Like Modern Lizards

The backbone is the Swiss Army Knife of mammal locomotion. It can function in all sorts of ways that allows living mammals to have remarkable diversity in their movements.

Archaeologists Discover one of Poland’s Largest Megalithic Tomb Complexes

Archaeologists excavating in Poland have discovered a large megalithic complex, containing several dozen tombs dating from 5500 years ago.

New Technology Allows Scientists First Glimpse of Intricate Details of Little Foot’s Life

In June 2019, an international team brought the complete skull of the 3.67-million-year-old Little Foot Australopithecus skeleton, from South Africa to the UK and achieved unprecedented imaging resolution of its bony structures and dentition in an X-ray synchrotron-based investigation at the UK's national synchrotron, Diamond Light Source.

Neandertals Had Capacity to Perceive and Produce Human Speech

Neandertals -- the closest ancestor to modern humans -- possessed the ability to perceive and produce human speech, according to a new study published by an international multidisciplinary team of researchers including Binghamton University anthropology professor Rolf Quam and graduate student Alex Velez.

Almost 600 Cats and Dogs Excavated in Ancient Pet Cemetery

Excavations of the early Roman port of Berenice in Egypt have unearthed the remains of nearly 600 cats and dogs from an ancient pet cemetery thought to be the earliest known yet discovered dating from 2000 years ago.

Popular stories

Ani – The Abandoned Medieval City

Ani is a ruined medieval city, and the former capital of the Bagratid Armenian kingdom, located in the Eastern Anatolia region of the Kars province in present-day Turkey.

Interactive Map of Earth’s Asteroid and Meteor Impact Craters

Across the history of our planet, around 190 terrestrial impact craters have been identified that still survive the Earth’s geological processes, with the most recent event occurring in 1947 at the Sikhote-Alin Mountains of south-eastern Russia.

The Sunken Town of Pavlopetri

Pavlopetri, also called Paulopetri, is a submerged ancient town, located between the islet of Pavlopetri and the Pounta coast of Laconia, on the Peloponnese peninsula in southern Greece.

Exploring the Avebury Stone Circle Landscape

The area was designated part of the Stonehenge, Avebury and Associated Sites by UNESCO in 1986, in recognition for one of the most architecturally sophisticated stone circles in the world, in addition to the rich Neolithic, and Bronze age remains found nearby, such as the West Kennet Avenue, Beckhampton Avenue, West Kennet Long Barrow, the Sanctuary, and Windmill Hill.