Date:

Ancient oak trees to shed light on the climate of the past 4500 years

Researchers will soon be able to reconstruct the climate of north-west Europe including the UK over the last 4500 years, and to date wooden buildings and objects more accurately, by analysing the chemistry of ancient oak trees, through a new Swansea-led project just selected for €3 million in European funding.

Analysis of tree rings – known as dendrochronology – is an established scientific technique for understanding the past. Tree rings can be examined in living or dead trees, or in objects made of wood, from the beams of a house to the planks of a ship.

- Advertisement -

The width of the rings indicates how much the trees grew in a particular year, which not only tells us about the climate of the past, but also allows us to date wooden structures and objects from antiquity with extraordinary precision.

However, this approach does not always work well in regions such as the UK and north-western Europe where the climate is mild and rarely limits tree growth. This makes dating challenging and reduces the confidence with which we can use tree-ring width measurements to study the climate of the past.

This is where the new project, which is called QUERCUS (Latin for “oak”), will make a difference.

The QUERCUS team will be examining ancient, historic and living oak samples covering the last 4500 years. Oak trees are especially useful as they are widespread across the study region, live a long time and their remains are frequently found in the archaeological record.

- Advertisement -

The key innovation is that the team will be analysing the chemistry of the wood rather than just the width of the rings. They will be examining the stable (non-radioactive) isotopes of the fundamental elements: carbon, oxygen and hydrogen.

The carbon isotopes in trees indicate changes in carbon assimilation for a given year, which in the UK relates to the amount of summer sunshine. The oxygen and hydrogen isotopes record information on the water used by the tree which indicates the amount of summer rainfall and changes in large-scale atmospheric circulation.

This evidence from the wood’s chemical signature will enable researchers to date the past and to reconstruct summer climate through time.

Crucially, unlike ring width, these isotope signals are just as reliable in trees from areas where growth is not strongly limited by climate. The project will also apply these methods to address long-standing archaeological questions of climate and chronology worldwide.

The team, led by Professor Neil Loader of Swansea’s Department of Geography, includes scientists from the University of Oxford’s School of Archaeology. They will work in close partnership with an interdisciplinary team of experts including representatives of Indigenous groups from across Europe, Aotearoa/New Zealand and the USA.

Professor Neil Loader of Swansea University, who leads the QUERCUS project, said:

“Stable isotopes in tree rings carry strong climate signals and can be used to reconstruct the climate of the past, even when the trees were not growing under environmental stress.

Using this new technique, the QUERCUS project will develop the first annually-resolved tree-ring isotopic chronologies for the UK and north-western Europe, extending back 4,500 years to the Bronze Age.

Our aim is to better understand the climate of the past, and for this we need an improved chronology of when things happened. Our ability to date wooden artefacts and timbers from antiquity will be enhanced significantly through this project. Together we hope that these advances will transform our knowledge of past climate and the dating of wooden artefacts and structures.”

The funding for the QUERCUS project has been approved by the European Research Council (ERC). Set up by the EU, the ERC funds top researchers of any nationality.

SWANSEA UNIVERSITY

- Advertisement -
spot_img
Mark Milligan
Mark Milligan
Mark Milligan is multi-award-winning journalist and the Managing Editor at HeritageDaily. His background is in archaeology and computer science, having written over 8,000 articles across several online publications. Mark is a member of the Association of British Science Writers (ABSW), the World Federation of Science Journalists, and in 2023 was the recipient of the British Citizen Award for Education, the BCA Medal of Honour, and the UK Prime Minister's Points of Light Award.
spot_img
spot_img
spot_img

Mobile Application

spot_img

Related Articles

Ramses III inscription discovered in Jordan’s Wadi Rum

Jordan’s Ministry of Tourism and Antiquities has announced the discovery of an inscription bearing the seal of Ramses III in the Wadi Rum Reserve, Jordan.

Prince’s royal tomb discovered in Saqqara 

An archaeological mission led by Dr. Zahi Hawass has discovered the tomb of Prince Waser-If-Re, the son of King Userkaf, founder of Egypt’s Fifth Dynasty.

Artefacts from Genghis Khan era rediscovered

Researchers at the Siberian Federal University (SFU) have rediscovered a collection of artefacts from the era of Genghis Khan while cataloguing undocumented objects in the storerooms of the Kytmanov Yenisei Museum-Reserve.

Face to face with royalty: Skull may belong to King Matthias Corvinus

A skull unearthed in the ruins of Hungary’s former royal coronation site may belong to King Matthias Corvinus.

Ancient Egyptian settlement discovered near Alexandria

Archaeologists excavating at Kom el-Nugus west of Alexandria have discovered the remains of a New Kingdom settlement.

Researchers uncover hidden inscriptions in Jerusalem’s Last Supper Room

An international team of researchers, including experts from the Austrian Academy of Sciences (ÖAW), have uncovered Medieval inscriptions hidden on the walls of the Cenacle – the traditional location of the Last Supper.

Thirty Years’ war camp excavation sheds light on military life

Archaeologists from the Bavarian State Office for Monument Preservation (BLfD) have excavated one of the largest fortified military camps of the Thirty Years' War, located in Stein, Germany.

Macabre book discovery at Suffolk Museum

A macabre book bound in human skin has been rediscovered at Moyse's Hall Museum in Bury St Edmunds, Suffolk.