Optical Seismometer Survives “Hellish” Summit of Caribbean Volcano

Related Articles

Related Articles

The heights of La Soufrière de Guadeloupe volcano can be hellish, sweltering at more than 48 degrees Celsius (120 degrees Fahrenheit) and swathed in billows of acidic gas.

Researchers would like to monitor gas and steam eruptions at its summit, to learn more about the volcano’s explosive potential, but conventional seismometers are destroyed quickly in the hostile environment.

An instrument called an optical seismometer appears to be up to the challenge, however. In the journal Seismological Research Letters, a team of scientists describes how they developed and installed an optical seismometer just ten meters away from a spewing fumarole (a gas and steam vent) at the Caribbean volcano’s summit.

 

The motion of the optical seismometer (and therefore of the ground) is estimated using an interference phenomenon, which occurs when an infrared laser beam is reflected by the mirrored surface of the seismometer mobile mass. This laser beam is carried between the seismometer at the summit and a remote and safe optoelectronic station through a long fiber optic cable, climbing the volcano’s slope. The station calculates the ground displacement and sends the records in real-time to the French Volcanological and Seismological Observatory of Guadeloupe.

The seismometer operates purely mechanically, and requires no electronics or power supply that would be vulnerable to the summit conditions, said Romain Feron, the paper’s lead author from the ESEO Group and the LAUM laboratory at the Université du Mans. The instrument is encased in Teflon to protect it from the sulfuric gases released by the fumarole.

“It is, to our knowledge, the first high-resolution optical seismometer ever installed on an active volcano or other hazardous zone,” Feron and colleagues write in SRL.

The success of the seismometer, after ten years of development, suggests that it could be a good seismic solution in other challenging environments, they noted, including oil and gas production fields, nuclear power plants and high-temperature geothermal reservoirs.

Now in operation on the volcano for nine months, the instrument is collecting data that will be combined with other observations from the Guadeloupe observatory to better monitor La Soufrière. The volcano’s last significant eruption of gas and steam in 1976 caused evacuations in Basse Terre, Guadeloupe’s capital city. Since 2018, the volcano’s dome and summit fumaroles have become increasingly active.

Seismic monitoring at volcanoes can help researchers understand the movement and pressurization of underground fluids. The new optical seismometer could provide better locations for microseismic events under the dome, and offers a more detailed glimpse of “the fumarole signature, which helps to constrain the geometry and activity of the plumbing system of the dome,” Feron said.

The instrument has recorded seismic waves from a regional earthquake, an earthquake in Chile, and small seismic events within the volcano less than 2.5 kilometers (1.6 miles) below the summit, the researchers reported.

Feron and colleagues made an arduous climb to La Soufrière’s 1,467-meter (4,813-foot) summit in September 2019 to install the seismometer, using gas masks to protect themselves from the toxic gases spewing from active fumaroles. In addition to the gases and high temperatures, the team needed to keep a close eye on the weather during the installation, Feron said.

“It could be beautiful at the bottom of the volcano, but hellish at the top at the same time,” he recalled. “It becomes very risky to climb the steep and slippery slopes of the volcano with heavy equipment on the back, not to mention lightning.”

SEISMOLOGICAL SOCIETY OF AMERICA

Download the HeritageDaily mobile application on iOS and Android

More on this topic

LATEST NEWS

Giant Sand Worm Discovery Proves Truth is Stranger Than Fiction

Simon Fraser University researchers have found evidence that large ambush-predatory worms--some as long as two metres--roamed the ocean floor near Taiwan over 20 million years ago.

Burial Practices Point to an Interconnected Early Medieval Europe

Early Medieval Europe is frequently viewed as a time of cultural stagnation, often given the misnomer of the 'Dark Ages'. However, analysis has revealed new ideas could spread rapidly as communities were interconnected, creating a surprisingly unified culture in Europe.

New Starfish-Like Fossil Reveals Evolution in Action

Researchers from the University of Cambridge have discovered a fossil of the earliest starfish-like animal, which helps us understand the origins of the nimble-armed creature.

Mars Crater Offers Window on Temperatures 3.5 Billion Years Ago

Once upon a time, seasons in Gale Crater probably felt something like those in Iceland. But nobody was there to bundle up more than 3 billion years ago.

Early Humans Used Chopping Tools to Break Animal Bones & Consume the Bone Marrow

Researchers from the Sonia and Marco Nadler Institute of Archaeology at Tel Aviv University unraveled the function of flint tools known as 'chopping tools', found at the prehistoric site of Revadim, east of Ashdod.

50 Million-Year-Old Fossil Assassin Bug Has Unusually Well-Preserved Genitalia

The fossilized insect is tiny and its genital capsule, called a pygophore, is roughly the length of a grain of rice.

Dinosaur-Era Sea Lizard Had Teeth Like a Shark

New study identifies a bizarre new species suggesting that giant marine lizards thrived before the asteroid wiped them out 66 million years ago.

The Iron Age Tribes of Britain

The British Iron Age is a conventional name to describe the independent Iron Age cultures that inhabited the mainland and smaller islands of present-day Britain.

Popular stories

The Iron Age Tribes of Britain

The British Iron Age is a conventional name to describe the independent Iron Age cultures that inhabited the mainland and smaller islands of present-day Britain.

The Roman Conquest of Wales

The conquest of Wales began in either AD 47 or 48, following the landing of Roman forces in Britannia sent by Emperor Claudius in AD 43.

Vallum Antonini – The Antonine Wall

The Antonine Wall (Vallum Antonini) was a defensive wall built by the Romans in present-day Scotland, that ran for 39 miles between the Firth of Forth, and the Firth of Clyde (west of Edinburgh along the central belt).

Vallum Aulium – Hadrian’s Wall

Hadrian’s Wall (Vallum Aulium) was a defensive fortification in Roman Britannia that ran 73 miles (116km) from Mais at the Solway Firth on the Irish Sea to the banks of the River Tyne at Segedunum at Wallsend in the North Sea.