Date:

The Lion’s Roar: New Telescope Spots Superflare in Leo

A new telescope in Okayama, Japan observed a superflare on a star in the constellation Leo to better understand how superflares on the Sun can affect technology and life on Earth.

Fortunately, the ways in which we can peer into the mists of the void are increasing, and now include Kyoto University’s 3.8 meter Seimei Telescope.

- Advertisement -

Using this new instrument — located on a hilltop in Okayama to the west of Kyoto — astronomers from Kyoto University’s Graduate School of Science and the National Astronomical Observatory of Japan have succeeded in detecting 12 stellar flare phenomena on AD Leonis, a red dwarf star 16 light-years away in the constellation Leo, the Lion. In particular, one of these flares was 20 times larger than those emitted by our own Sun.

“Solar flares are sudden explosions that emanate from the surfaces of stars, including our own Sun,” explains Kosuke Namekata, first author of the paper which appeared in Publications of the Astronomical Society of Japan. “On rare occasions, an extremely large superflare will occur. These result in massive magnetic storms, which when emitted from our Sun can affect the Earth’s technological infrastructure.”

Hence understanding the properties of superflares can be vital, but their rareness means that it is difficult to gather data from observing our Sun alone. This has led researchers to look for exoplanets similar to Earth, and to examine the stars they orbit.

In their paper in Publications of the Astronomical Society of Japan, the team reports on a long week of setting the sights of Seimei — along with other observational facilities — to AD Leonis. This M-type red dwarf is cooler than our Sun, resulting in a higher incidence of flares. The team expected a number of these flares to be large, but were still astounded to detect a superflare on their very first night of observations.

- Advertisement -

“Our analyses of the superflare resulted in some very intriguing data,” Namekata explains.

Light from excited hydrogen atoms in the superflare indicated that there were roughly 10 times more high-energy electrons than seen in typical flares from our Sun.

“This is the first time this phenomenon has been reported, and it’s thanks to the high precision of the Seimei Telescope,” says Namekata.

The team also observed flares where light from excited hydrogen atoms increased, but did not correspond with an increase in brightness across the rest of the visible spectrum.

“This was new for us as well, because typical flare studies have observed the continuum of the light spectrum — the broad range of wavelengths — rather than energy coming from specific atoms,” continues Namekata.

The high-quality of these data was thanks to the new telescope, which the team hopes will open doors to new revelations regarding extreme space events.

Kazunari Shibata, leader of the study, concludes, “More information on these fundamental stellar phenomena will help us predict superflares, and possibly mitigate magnetic storm damage here on Earth. We may even be able to begin understanding how these emissions can affect the existence — or emergence — of life on other planets.”

NAOJ

Header Image Credit : NAOJ

- Advertisement -

Stay Updated: Follow us on iOS, Android, Google News, Facebook, Instagram, Twitter, Threads, TikTok, LinkedIn, and our newsletter

spot_img
Mark Milligan
Mark Milligan
Mark Milligan is a multi-award-winning journalist and the Managing Editor at HeritageDaily. His background is in archaeology and computer science, having written over 8,000 articles across several online publications. Mark is a member of the Association of British Science Writers (ABSW), the World Federation of Science Journalists, and in 2023 was the recipient of the British Citizen Award for Education, the BCA Medal of Honour, and the UK Prime Minister's Points of Light Award.
spot_img
spot_img

Mobile Application

spot_img

Related Articles

Monument linked to Iberian star mythology discovered in Jódar

Archaeologists from the Research Institute for Iberian Archaeology (IAI) at the University of Jaén (UJA) have discovered a monument connected to the sun and other celestial bodies within Iberian mythology.

Project is restoring Costa Rica’s mysterious stone spheres

A joint team of specialists from Costa Rica and Mexico are restoring three stone spheres at the Finca 6 Museum Site in Palmar de Osa.

Inscription sheds light on First Emperor’s quest for immortality

China’s First Emperor, Qin Shi Huang, was born in 259 BC in Handan, the capital of Zhao. He was originally named Ying Zheng, or Zhao Zheng, with ‘Zheng’ drawn from Zhengyue, the first month of the Chinese lunar calendar.

Artefacts from Battle of Dubienka unearthed near Uchanie

On July 18th, 1792, Polish forces under General Tadeusz Kościuszko clashed with Russian troops in what became one of the defining engagements of the Polish-Russian War.

Submerged port discovery could lead to Cleopatra’s lost tomb

Archaeologists have discovered a submerged ancient port near the ruins of the Taposiris Magna temple complex west of Alexandria, Egypt.

Archaeologists begin landmark study of Dzhetyasar culture settlements

Archaeologists from the Margulan Institute of Archaeology and the German Institute of Archaeology are conducting the first ever large-scale study of Dzhetyasar culture sites in Kazakhstan.

Study reveals arsenical bronze production during Egypt’s Middle Kingdom

A new open-access study published in Archaeometry unveils the first direct evidence of arsenical bronze production on Elephantine Island, Aswan, dating to Egypt’s Middle Kingdom (c. 2000–1650 BCE).

Hittite seals and tablets among new finds at Kayalıpınar

Archaeologists excavating the Hittite settlement of Kayalıpınar in Türkiye’s Sivas’ Yıldızeli district have unearthed a trove of cuneiform tablets and seal impressions.