Date:

Scientists lead study of galaxy’s ‘water worlds’

Astrophysical observations have shown that Neptune-like water-rich exoplanets are common in our galaxy.

These “water worlds” are believed to be covered with a thick layer of water, hundreds to thousands of miles deep, above a rocky mantle.

- Advertisement -

While water-rich exoplanets are common, their composition is very different from Earth, so there are many unknowns in terms of these planets’ structure, composition and geochemical cycles.

In seeking to learn more about these planets, an international team of researchers, led by Arizona State University, has provided one of the first mineralogy lab studies for water-rich exoplanets. The results of their study have been recently published in the journal Proceedings of the National Academy of Sciences.

“Studying the chemical reactions and processes is an essential step toward developing an understanding of these common planet types,” said co-author Dan Shim, of ASU’s School of Earth and Space Exploration.

The general scientific conjecture is that water and rock form separate layers in the interiors of water worlds. Because water is lighter, underneath the water layer in water-rich planets, there should be a rocky layer. However, the extreme pressure and temperature at the boundary between water and rocky layers could fundamentally change the behaviors of these materials.

- Advertisement -

To simulate this high pressure and temperature in the lab, lead author and research scientist Carole Nisr conducted experiments at Shim’s Lab for Earth and Planetary Materials at ASU using high pressure diamond-anvil cells.

For their experiment, the team immersed silica in water, compressed the sample between diamonds to a very high pressure, then heated the sample with laser beams to over a few thousand degrees Fahrenheit.

The team also conducted laser heating at the Argonne National Laboratory in Illinois. To monitor the reaction between silica and water, X-ray measurements were taken while the laser heated the sample at high pressures.

What they found was an unexpected new solid phase with silicon, hydrogen and oxygen all together.

“Originally, it was thought that water and rock layers in water-rich planets were well-separated,” Nisr said. “But we discovered through our experiments a previously unknown reaction between water and silica and stability of a solid phase roughly in an intermediate composition. The distinction between water and rock appeared to be surprisingly ‘fuzzy’ at high pressure and high temperature.”

The researchers hope that these findings will advance our knowledge on the structure and composition of water-rich planets and their geochemical cycles.

“Our study has important implications and raises new questions for the chemical composition and structure of the interiors of water-rich exoplanets,” Nisr said. “The geochemical cycle for water-rich planets could be very different from that of the rocky planets, such as Earth.”

ARIZONA STATE UNIVERSITY

Header Image – Public Domain

- Advertisement -

Stay Updated: Follow us on iOS, Android, Google News, Facebook, Instagram, Twitter, Threads, TikTok, LinkedIn, and our newsletter

spot_img
Mark Milligan
Mark Milligan
Mark Milligan is a multi-award-winning journalist and the Managing Editor at HeritageDaily. His background is in archaeology and computer science, having written over 8,000 articles across several online publications. Mark is a member of the Association of British Science Writers (ABSW), the World Federation of Science Journalists, and in 2023 was the recipient of the British Citizen Award for Education, the BCA Medal of Honour, and the UK Prime Minister's Points of Light Award.
spot_img
spot_img

Mobile Application

spot_img

Related Articles

Royal tomb unearthed in Gordion could belong to King Midas’ family

Archaeologists from the Gordion Project have uncovered a Phrygian royal tomb, potentially belonging to a member of King Midas' Family from the 8th century BC.

Bronze Age tombs reveal wealth from ancient trade

The discovery of three Bronze Age tombs at Dromolaxia-Vyzakia has shed light on ancient trade routes connecting Cyprus with the Aegean, Anatolia, Egypt, and the Near East.

Dolphin mosaic discovery is part of an expansive Roman villa complex

Archaeologists from OÖ Landes-Kultur GmbH and the University of Salzburg have uncovered an expansive Roman villa complex on Reinberg hill in Thalheim bei Wels, Austria.

Over 100 prehistoric structures found in Spanish cave

Archaeologists from the University of Alicante and the University of Zaragoza have discovered over 100 prehistoric structures within the Cova Dones cave system in Valencia, Span.

Viking-era treasure hoard among several significant discoveries in Täby

Several significant Viking-era discoveries have been made in Täby, Sweden, where archaeologists from Arkeologerna have uncovered a large silver hoard alongside the remains of an extensive farming settlement.

Lost monuments of the “people of the cloud forest” unearthed at Gran Pajatén

The World Monuments Fund (WMF) has announced the discovery of more than 100 previously undocumented structures at Gran Pajatén, located within Peru’s Río Abiseo National Park.

Experts explain the cultural origin of the mysterious deformed skull

Construction workers in San Fernando, Argentina, recently uncovered a mysterious skull with an unusual, deformed morphology.

1,600-year-old Byzantine mosaic unveiled for the first time

A large Byzantine-era mosaic discovered in 1990 at the edge of Khirbat Be’er Shema, Israel, has been unveiled to the public for the first time.