Researchers challenge accuracy of methods that analyze trees of life

Related Articles

Related Articles

When species under a taxonomic umbrella have faced forks in the road, leading to extinction or adaptation, the path taken has been difficult to follow.

In a newly published paper, two scientists argue that long-used approaches for reconstructing these paths are deeply flawed.

While paleontological evidence provides insights on how and why patterns of biodiversity have changed over geological time, fossil finds for many types of organisms are too scant to say anything, said University of Oregon biologist Stilianos Louca, lead author of a paper placed online April 15 ahead of print in the journal Nature.

An alternative approach, he noted, relies on using identifiable changes in an organism’s genetic makeup, but the signal in this type of data can be misleading.

“Our finding casts serious doubts over literally thousands of studies that use phylogenetic trees of extant data to reconstruct the diversification history of taxa, especially for those taxa where fossils are rare, or that found correlations between environmental factors such as changing global temperatures and species extinction rates,” said Louca, who is a member of the UO’s Institute of Ecology and Evolution.

In their paper, Louca and Matthew W. Pennell, an evolutionary biologist at the University of British Columbia in Vancouver, also offer a way forward – a mathematical model that introduces alternative variables to characterize long-term evolutionary scenarios that can be accurately identified from phylogenetic data.


Subscribe to more articles like this by following our Google Discovery feed - Click the follow button on your desktop or the star button on mobile. Subscribe

“I have been working with these traditional types of models for a decade now,” Pennell said. “I am one of the lead developers of a popular software package for estimating diversification rates from phylogenetic trees. And, as such, I thought I had a really good sense of how these models worked. I was wrong.”

In their paper, the researchers note that long-used methods extract information about evolution from still-living organisms, using variants of a mathematical birth-death process. These, however, cannot possibly extract information about both speciation and extinction rates, especially for a majority of taxa, such as bacteria, that have left no fossil record.

The paleontological approach estimates the number of species that have appeared and disappeared in various intervals based on discovered fossils and their estimated minimum and maximum ages. In the phylogenetic approach, information is extracted from evolutionary relationships between existing species, using mostly genetic data, and structured in phylogenetic trees known as timetrees.

This is often done by finding a speciation/extinction scenario that would have been the most likely to generate a given phylogenetic tree.

“While an impressive suite of computational methods has been developed over the past decades for extracting whatever information is left, until now we lacked a good understanding of exactly what information is left in these trees, and what information is forever lost,” Louca said.

Louca and Pennell’s mathematically driven approach clarifies precisely what information can be extracted from extant timetrees under the generalized birth-death model. The researchers introduce new identifiable and easily interpretable variables that contain all available information about past diversification dynamics and how they can be estimated.

“We suggest that measuring and modeling these identifiable variables offers a more robust way to study historical diversification dynamics,” they write in the paper. “Our findings also make clear that paleontological data will continue to be crucial for answering some macroevolutionary questions.”

“The future depends on synthesizing information from datasets of both molecules and fossils,” Pennell said.

The researchers emphasize that their results do not invalidate the theory of evolution itself, they just put constraints on what type of information can possibly be extracted from genetic data to reconstruct evolution’s path.

UNIVERSITY OF OREGON

Header Image – Public Domain

- Advertisement -

Download the HeritageDaily mobile application on iOS and Android

More on this topic

LATEST NEWS

Volubilis – The Ancient Berber City

Volubilis is an archaeological site and ancient Berber city that many archaeologists believe was the capital of the Kingdom of Mauretania.

Pella – Birthplace of Alexander The Great

Pella is an archaeological site and the historical capital of the ancient kingdom of Macedon.

New Argentine fossils uncover history of celebrated conifer group

Newly unearthed, surprisingly well-preserved conifer fossils from Patagonia, Argentina, show that an endangered and celebrated group of tropical West Pacific trees has roots in the ancient supercontinent that once comprised Australia, Antarctica and South America, according to an international team of researchers.

High-tech CT reveals ancient evolutionary adaptation of extinct crocodylomorphs

The tree of life is rich in examples of species that changed from living in water to a land-based existence.

Fish fossils become buried treasure

Rare metals crucial to green industries turn out to have a surprising origin. Ancient global climate change and certain kinds of undersea geology drove fish populations to specific locations.

Archaeologists Discover Viking Toilet in Denmark

Archaeologists excavating a settlement on the Stevns Peninsula in Denmark suggests they have discovered a toilet from the Viking Age.

Innovation by ancient farmers adds to biodiversity of the Amazon, study shows

Innovation by ancient farmers to improve soil fertility continues to have an impact on the biodiversity of the Amazon, a major new study shows.

Lost Shiva Temple Buried in Sand Discovered by Local Villagers

Villagers from the Perumallapadu village in the Pradesh’s Nellore district of India have unearthed the 300-year-old Temple of Nageswara Swamy on the banks of the Penna River.

Ma’rib – Capital of the Kingdom of Saba

Ma'rib is an archaeological site and former capital of the ancient kingdom of Saba in modern-day Ma'rib in Yemen

Giant Egg Discovered in Antarctica Belonged to Marine Reptile

A large fossil discovered in Antarctica by Chilean researchers in 2011 has been found to be a giant, soft-shell egg from 66 million years ago.

Popular stories