Date:

Ocean changes almost starved life of oxygen 800 million years ago

Chemical changes in the oceans more than 800 million years ago almost destroyed the oxygen-rich atmosphere that paved the way for complex life on Earth, new research suggests.

Then, as now, the planet had an “oxidizing” atmosphere, driven by phytoplankton – the “plants” of the ocean – releasing oxygen during photosynthesis.

- Advertisement -

However, new research from an international team including the University of Exeter and spanning Toulouse, Leeds, London and Nanjing, suggests ocean changes in the early Neoproterozoic era (from one billion to 800 million years ago) may have locked away phosphorus – a vital nutrient for life – limiting phytoplankton growth and oxygen release.

The study suggests the amount of phosphorus available remained “just sufficient” to support the oxidising atmosphere – preventing a return to the “reducing” (oxygen-poor) atmosphere that existed over a billion years earlier.

“Ocean chemistry in this period changed to become ‘ferruginous’ (rich in iron),” said Dr Romain Guilbaud, of CNRS (Toulouse).

“We know ocean chemistry affects the cycle of phosphorus, but the impact on phosphorus availability at this time hadn’t been investigated until now.

- Advertisement -

“By analysing ocean sediments, we found that iron minerals were very effective at removing phosphorus from the water.”

Phytoplankton growth also boosts atmospheric oxygen because, having split carbon and oxygen and released the oxygen, plants die and their carbon is buried – so it cannot recombine with oxygen to form carbon dioxide.

Despite reductions in photosynthesis and this organic burial of carbon, both due to limited phosphorus, the study suggests oxygen in the atmosphere dropped no lower than 1% of current levels – “just enough” to maintain an oxidizing atmosphere.

“Our observations suggest significant potential variability in atmospheric oxygen concentrations across Earth’s ‘middle age’,” said Professor Tim Lenton, Director of the Global Systems Institute at the University of Exeter.

He added: “One question about the emergence of complex life is why it didn’t happen sooner.

“Lack of oxygen and lack of nutrients are two possible reasons, and our study suggests both of these may have been the case in the early Neoproterozoic era.

“In fact, if phosphorus levels in the water had dropped any lower, it could have tipped the world back into a ‘reducing’ atmosphere suitable for bacteria but not for complex life.”

A return to a “reducing” atmosphere would have reversed the Great Oxidation Event, which occurred about 2.5 billion years ago, during which photosynthesis by cyanobacteria in the oceans introduced free oxygen to the atmosphere.

UNIVERSITY OF EXETER

Header Credit : Public Domain

- Advertisement -
spot_img
Mark Milligan
Mark Milligan
Mark Milligan is multi-award-winning journalist and the Managing Editor at HeritageDaily. His background is in archaeology and computer science, having written over 8,000 articles across several online publications. Mark is a member of the Association of British Science Writers (ABSW), the World Federation of Science Journalists, and in 2023 was the recipient of the British Citizen Award for Education, the BCA Medal of Honour, and the UK Prime Minister's Points of Light Award.
spot_img

Mobile Application

spot_img

Related Articles

Dragon sculpture found on the Jiankou section of the Great Wall of China

Archaeologists conducting restoration works on the Jiankou section of the Great Wall of China have discovered an ornate dragon sculpture.

Waters at Roman Bath may have super healing properties

A new study, published in the Microbe journal, has uncovered a diverse array of microorganisms in the geothermal waters at Roman Bath that may have super healing properties.

9,000-year-old Neolithic stone mask unveiled

A rare stone mask from the Neolithic period has been unveiled for the first time by the Israel Museum in Jerusalem.

Archaeologists recover two medieval grave slabs from submerged shipwreck

Underwater archaeologists from Bournemouth University have recovered two medieval grave slabs from a shipwreck off the coast of Dorset, England.

Study confirms palace of King Ghezo was site of voodoo blood rituals

A study, published in the journal Proteomics, presents new evidence to suggest that voodoo blood rituals were performed at the palace of King Ghezo.

Archaeologists search for home of infamous Tower of London prisoner

A team of archaeologists are searching for the home of Sir Arthur Haselrig, a leader of the Parliamentary opposition to Charles I, and whose attempted arrest sparked the English Civil War.

Tartessian plaque depicting warrior scenes found near Guareña

Archaeologists from the Institute of Archaeology of Mérida (IAM) and the CSIC have uncovered a slate plaque depicting warrior scenes at the Casas del Turuñuelo archaeological site.

Archaeologists find a necropolis of stillborn babies

Excavations by the National Institute for Preventive Archaeological Research (Inrap) have unearthed a necropolis for stillborn and young children in the historic centre of Auxerre, France.