Date:

A molecule that directs neurons

The habenula is a small region at the centre of the brain, but is crucial for people’s lives. It is made up of groups of nerve cells that control the “neurotransmitters” of the brain, that is to say substances like dopamine, noradrenaline and serotonin.

The release of these substances is fundamental to respond to stimuli, for example to perceive pain or fear and to regulate mood-related behaviours, and is implicated in conditions like schizophrenia, autism and depression.

Scientists have known the habenula for a long time, but little is known about its implications in nervous system conditions. And that is precisely what a genetic study coordinated by the University of Trento, whose results were published in “Development“, a scientific journal of developmental biology, set out to explore.

The research work was mainly performed at the Laboratory of translational neurogenetics with support from the Laboratory of molecular and cellular ophthalmology led by Lucia Poggi of Cibio, the Department of Cellular, computational and integrative biology of the University of Trento, in collaboration with the universities of Heidelberg (Matthias Carl was working there before moving to Trento) and Padova.

- Advertisement -

Matthias Carl, coordinator of the study, explained: “The brain is enormously complex and billions of neurons are generated in a perfect symphony with precise connections among them. When something goes wrong in this process there can be devastating consequences to our daily life and behaviour, which can cause for instance diseases like schizophrenia, autism or depression. The habenula, which is present in all vertebrate animals from fish to humans, is an important brain structure associated to these conditions. It functions like a post-office as it releases the “neurotransmitters”, the chemical substances, that direct the symphony”.

The research team identified a molecule that is essential for the correct composition of habenula neurons and their connectivity in the brain. This molecule (Wnt inhibitory factor 1, Wif1), which is a well-known tumour suppressor, plays a key role also in this symphony of neurons and their proper functioning, and may be implicated in autism. This knowledge, linking the molecule, brain structure and a number of neurological disorders, opens new directions for research into brain disorders, hopefully to find out more about serious conditions that can only be treated in ways that take a toll on the quality of life of people.

UNIVERSITÀ DI TRENTO

- Advertisement -
Mark Milligan
Mark Milligan
Mark Milligan is an award winning journalist and the Managing Editor at HeritageDaily. His background is in archaeology and computer science, having written over 7,500 articles across several online publications. Mark is a member of the Association of British Science Writers (ABSW), the World Federation of Science Journalists, and in 2023 was the recipient of the British Citizen Award for Education and the BCA Medal of Honour.

Mobile Application

spot_img

Related Articles

Inca quarries and road network found in Cañete

Archaeologists have discovered Inca quarries and a road network in Cerros de Quilmaná and Cerro Quinta Freno, in the province of Cañete, Peru.

Prison bakery for enslaved people found in Roman Pompeii

Archaeologists have uncovered a Prison bakery during recent excavations in Pompeii.

Baboons in Ancient Egypt were raised in captivity before being mummified

In a new study published in the open-access journal PLOS ONE, researchers examined a collection of baboon mummies from the ancient Egyptian site of Gabbanat el-Qurud, the so-called Valley of the Monkeys on the west bank of Luxor.

Archaeologists find 22 mummified burials in Peru

A Polish-Peruvian team of archaeologists have uncovered 22 mummified burials in Barranca, Peru.

Oldest prehistoric fortress found in remote Siberia

An international team, led by archaeologists from Freie Universität Berlin has uncovered an ancient prehistoric fortress in a remote region of Siberia known as Amnya.

Top 10 archaeological discoveries of 2023

The field of archaeology has been continuously evolving in 2023, making significant strides in uncovering new historical findings, preserving cultural heritage, and employing innovative technologies to study the past.

War in Ukraine sees destruction of cultural heritage not witnessed since WW2

The full-scale Russian invasion of Ukraine on 24 February 2022 has resulted in a significant loss of human lives and the national and international displacement of many Ukrainian people.

Archaeologists find five Bronze Age axes in the forests of Kociewie

According to an announcement by the Pomeranian Provincial Conservator of Monuments, archaeologists have discovered five Bronze Age axes in Starogard Forest District, located in Kociewie, Poland.