Date:

Physics determined ammonite shell shape

Ammonites are a group of extinct cephalopod mollusks with ribbed spiral shells. They are unusually diverse and well known among fossil lovers. Régis Chirat, researcher at the Laboratoire de Géologie de Lyon: Terre, Planètes et Environnement (CNRS/Université Claude Bernard Lyon 1/ENS de Lyon), and two colleagues from the Mathematical Institute at the University of Oxford have established the first biomechanical model explaining how these shells form and why they are so diverse.

Their approach provides new paths for interpreting the evolution of ammonites and nautili, their smooth-shelled distant “cousins” that still occupy the Indian and Pacific oceans. This work has just been published on the website of the Journal of Theoretical Biology.

- Advertisement -

The shape of living organisms evolves over a long period of time. The questions raised by this transformation have led to the emergence of theories of evolution. In order to research how biological shapes alter over a geological time scale, researchers have recently begun to investigate how they are generated during an individual’s development and growth; this is known as morphogenesis. Due to an exceptional diversity of their shell shapes and patterns (particularly the ribs), ammonites have been widely studied from the point of view of evolution but the mechanisms underlying the coiled spirals were unknown until now. Researchers therefore attempted to elucidate the evolution of these shapes without knowing how they had emerged.

Régis Chirat and his team have developed a model that explains the morphogenesis of these shells. By using mathematical equations to describe how the shell is secreted by ammonite and grows, they have demonstrated the existence of mechanical forces specific to developing mollusks. These forces are dependent upon the physical properties of the biological tissues and on the geometry of the shell. They cause mechanical oscillations at the edge of the shell that create ribs, a sort of ornamental pattern on the spiral.

Ammonites as they would appear in life: WikiPedia
Ammonites as they would appear in life: WikiPedia

Through examining various fossil specimens in light of the simulations produced by the model, the researchers observed that the latter could predict the number and shape of ribs in several ammonites. The model displays that the ornamentation of the shell evolves as a function of variables such as tissue elasticity and shell expansion rate (the rate at which the diameter of the opening increases with each spiral coil).

By providing a biophysical explanation for how these ornaments form, this theoretical approach explains the diversity existing within and between species. It thus opens new perspectives for the study of the morphological evolution of ammonites, which appears to be largely governed by mechanical and geometric constraints. This new tool unveils new information on an old mystery. For almost 200 million years, the shells of nautili, distant “cousins” of ammonites, have remained essentially smooth and free of distinctive ornamentation. The model shows that having maintained this shell shape does not mean that nautili- incorrectly referred to as “living fossils”- have not evolved, but this is due to a high expansion rate, leading to the formation of smooth shells that are difficult to distinguish from one another.

- Advertisement -

More generally, this work highlights the value of studying the physical bases of biological development: understanding the “construction rules” underlying the morphological diversity of organisms makes it possible to partially predict how their shape evolves.

Contributing Source: CNRS (Délégation Paris Michel-Ange)

Header Image Source: WikiPedia

- Advertisement -
spot_img
Mark Milligan
Mark Milligan
Mark Milligan is multi-award-winning journalist and the Managing Editor at HeritageDaily. His background is in archaeology and computer science, having written over 8,000 articles across several online publications. Mark is a member of the Association of British Science Writers (ABSW), the World Federation of Science Journalists, and in 2023 was the recipient of the British Citizen Award for Education, the BCA Medal of Honour, and the UK Prime Minister's Points of Light Award.
spot_img
spot_img
spot_img

Mobile Application

spot_img

Related Articles

Ancient Egyptian settlement discovered near Alexandria

Archaeologists excavating at Kom el-Nugus west of Alexandria have discovered the remains of a New Kingdom settlement.

Researchers uncover hidden inscriptions in Jerusalem’s Last Supper Room

An international team of researchers, including experts from the Austrian Academy of Sciences (ÖAW), have uncovered Medieval inscriptions hidden on the walls of the Cenacle – the traditional location of the Last Supper.

Thirty Years’ war camp excavation sheds light on military life

Archaeologists from the Bavarian State Office for Monument Preservation (BLfD) have excavated one of the largest fortified military camps of the Thirty Years' War, located in Stein, Germany.

Macabre book discovery at Suffolk Museum

A macabre book bound in human skin has been rediscovered at Moyse's Hall Museum in Bury St Edmunds, Suffolk.

Homeowner discovers hidden tunnel beneath townhouse

A homeowner unexpectedly discovered a hidden tunnel during renovations of their townhouse in Tielt, Belgium.

Armed in death: swords reveal warrior graves

Archaeologists from the National Institute for Preventive Archaeological Research (INRAP) have uncovered a necropolis with burials accompanied by richly adorned grave goods.

4,000 fragments of Roman wall paintings unearthed in Villajoyosa

Archaeologists excavating the Roman villa of Barberes Sud in Villajoyosa, Spain, have unearthed over 4,000 fragments of ornamental wall paintings.

Archaeologists solve the mystery of the “Deserted Castle”

Along the shores of a Danube tributary near Stopfenreuth are a section of ruined walls known locally as the “Deserted Castle”.