Date:

Physics determined ammonite shell shape

Ammonites are a group of extinct cephalopod mollusks with ribbed spiral shells. They are unusually diverse and well known among fossil lovers. Régis Chirat, researcher at the Laboratoire de Géologie de Lyon: Terre, Planètes et Environnement (CNRS/Université Claude Bernard Lyon 1/ENS de Lyon), and two colleagues from the Mathematical Institute at the University of Oxford have established the first biomechanical model explaining how these shells form and why they are so diverse.

Their approach provides new paths for interpreting the evolution of ammonites and nautili, their smooth-shelled distant “cousins” that still occupy the Indian and Pacific oceans. This work has just been published on the website of the Journal of Theoretical Biology.

- Advertisement -

The shape of living organisms evolves over a long period of time. The questions raised by this transformation have led to the emergence of theories of evolution. In order to research how biological shapes alter over a geological time scale, researchers have recently begun to investigate how they are generated during an individual’s development and growth; this is known as morphogenesis. Due to an exceptional diversity of their shell shapes and patterns (particularly the ribs), ammonites have been widely studied from the point of view of evolution but the mechanisms underlying the coiled spirals were unknown until now. Researchers therefore attempted to elucidate the evolution of these shapes without knowing how they had emerged.

Régis Chirat and his team have developed a model that explains the morphogenesis of these shells. By using mathematical equations to describe how the shell is secreted by ammonite and grows, they have demonstrated the existence of mechanical forces specific to developing mollusks. These forces are dependent upon the physical properties of the biological tissues and on the geometry of the shell. They cause mechanical oscillations at the edge of the shell that create ribs, a sort of ornamental pattern on the spiral.

Ammonites as they would appear in life: WikiPedia
Ammonites as they would appear in life: WikiPedia

Through examining various fossil specimens in light of the simulations produced by the model, the researchers observed that the latter could predict the number and shape of ribs in several ammonites. The model displays that the ornamentation of the shell evolves as a function of variables such as tissue elasticity and shell expansion rate (the rate at which the diameter of the opening increases with each spiral coil).

By providing a biophysical explanation for how these ornaments form, this theoretical approach explains the diversity existing within and between species. It thus opens new perspectives for the study of the morphological evolution of ammonites, which appears to be largely governed by mechanical and geometric constraints. This new tool unveils new information on an old mystery. For almost 200 million years, the shells of nautili, distant “cousins” of ammonites, have remained essentially smooth and free of distinctive ornamentation. The model shows that having maintained this shell shape does not mean that nautili- incorrectly referred to as “living fossils”- have not evolved, but this is due to a high expansion rate, leading to the formation of smooth shells that are difficult to distinguish from one another.

- Advertisement -

More generally, this work highlights the value of studying the physical bases of biological development: understanding the “construction rules” underlying the morphological diversity of organisms makes it possible to partially predict how their shape evolves.

Contributing Source: CNRS (Délégation Paris Michel-Ange)

Header Image Source: WikiPedia

- Advertisement -

Stay Updated: Follow us on iOS, Android, Google News, Facebook, Instagram, Twitter, Threads, TikTok, LinkedIn, and our newsletter

spot_img
Mark Milligan
Mark Milligan
Mark Milligan is a multi-award-winning journalist and the Managing Editor at HeritageDaily. His background is in archaeology and computer science, having written over 8,000 articles across several online publications. Mark is a member of the Association of British Science Writers (ABSW), the World Federation of Science Journalists, and in 2023 was the recipient of the British Citizen Award for Education, the BCA Medal of Honour, and the UK Prime Minister's Points of Light Award.
spot_img
spot_img

Mobile Application

spot_img

Related Articles

Underwater study reveals remarkable details of WWII German U-Boat

An underwater study using 3D photogrammetry has revealed remarkable details of the U-670, a Type VIIC U-boat of Nazi Germany's Kriegsmarine during World War II.

Intact Roman helmet from First Punic War discovered

Archaeologists have discovered an intact Roman helmet while conducting an underwater study near the Aegadian Islands off Sicily’s western coast.

Ritual tomb discovered in Northern Peru reveals evidence of human sacrifice

Excavations near the Temple of Puémape, an archaeological complex in the San Pedro Lloc district in Peru, have unearthed traces of human sacrifice following the discovery of a ritual tomb.

Archaeologists explore wreck site of revolutionary war gunboat

Archaeologists from the Centre for Maritime Archaeology and Conservation (CMAC) at Texas A&M University have carried out a study of the wreck site of the Philadelphia, a Revolutionary War gunboat.

2,000-year-old Roman bridge found in Aegerten

Archaeologists from the Archaeological Service of the Canton of Bern have uncovered the remains of a 2,000-year-old Roman bridge during excavations near the River Zihl in Aegerten, Switzerland.

Detectorist discovers perfectly preserved posnet

Malcolm Weale, a metal detectorist and self-described history detective, has discovered a perfectly preserved posnet during a survey near Thetford, England.

Time capsule of prehistoric treasures discovered in Swedish bog

Archaeologists from Arkeologerna, part of the State Historical Museums (SHM), have discovered a time capsule of prehistoric treasures in a bog outside Järna in Gerstaberg.

Evidence indicates that early humans braved Britain’s Ice Age

Archaeologists from the University of Cambridge have uncovered evidence that early humans not only lived in Britain more than 700,000 years ago, but braved Britain’s Ice Age 440,000 years ago.