Date:

Rewriting the history of volcanic forcing during the past 2,000 years

A year-by-year record of volcanic eruptions from a comprehensive Antarctic ice core array

A team of scientists led by Michael Sigl and Joe McConnell of Nevada’s Desert Research Institute (DRI) has completed the most accurate and precise reconstruction to date of historic volcanic sulfate emissions in the Southern Hemisphere.

- Advertisement -

The new record, described in a manuscript published today in the online edition of Nature Climate Change, is derived from a large number of individual ice cores collected at various locations across Antarctica and is the first annually resolved record extending through the Common Era (the last 2,000 years of human history).

“This record provides the basis for a dramatic improvement in existing reconstructions of volcanic emissions during recent centuries and millennia,” said the report’s lead author Michael Sigl, a postdoctoral fellow and specialist in DRI’s unique ultra-trace ice core analytical laboratory, located on the Institute’s campus in Reno, Nevada.

These reconstructions are critical to accurate model simulations used to assess past natural and anthropogenic climate forcing. Such model simulations underpin environmental policy decisions including those aimed at regulating greenhouse gas and aerosol emissions to mitigate projected global warming.

Powerful volcanic eruptions are one of the most significant causes of climate variability in the past because of the large amounts of sulfur dioxide they emit, leading to formation of microscopic particles known as volcanic sulfate aerosols. These aerosols reflect more of the sun’s radiation back to space, cooling the Earth. Past volcanic events are measured through sulfate deposition records found in ice cores and have been linked to short-term global and regional cooling.

- Advertisement -

This effort brought together the most extensive array of ice core sulfate data in the world, including the West Antarctic Ice Sheet (WAIS) Divide ice core – arguably the most detailed record of volcanic sulfate in the Southern Hemisphere. In total, the study incorporated 26 precisely synchronized ice core records collected in an array of 19 sites from across Antarctica.

“This work is the culmination of more than a decade of collaborative ice core collection and analysis in our lab here at DRI,” said Joe McConnell, a DRI research professor who developed the continuous-flow analysis system used to analyze the ice cores.

McConnell, a member of several research teams that collected the cores (including the 2007-2009 Norwegian-American Scientific Traverse of East Antarctica and the WAIS Divide project that reached a depth of 3,405 meters in 2011), added, “The new record identifies 116 individual volcanic events during the last 2000 years.”

“Our new record completes the period from years 1 to 500 AD, for which there were no reconstructions previously, and significantly improves the record for years 500 to 1500 AD,” Sigl added. This new record also builds on DRI’s previous work as part of the international Past Global Changes (PAGES) effort to help reconstruct an accurate 2,000-year-long global temperature for individual continents.

This study involved collaborating researchers from the United States, Japan, Germany, Norway, Australia, and Italy. International collaborators contributed ice core samples for analysis at DRI as well as ice core measurements and climate modeling.

According to Yuko Motizuki from RIKEN (Japan’s largest comprehensive research institution), “The collaboration between DRI, National Institute of Polar Research (NIPR), and RIKEN just started in the last year, and we were very happy to be able to use the two newly obtained ice core records taken from Dome Fuji, where the volcanic signals are clearly visible. This is because precipitation on the site mainly contains stratospheric components.” Dr. Motizuki analyzed the samples collected by the Japanese Antarctic Research Expedition.

Simulations of volcanic sulfate transport performed with a coupled aerosol-climate model were compared to the ice core observations and used to investigate spatial patterns of sulfate deposition to Antarctica.

“Both observations and model results show that not all eruptions lead to the same spatial pattern of sulfate deposition,” said Matthew Toohey from the German institute GEOMAR Helmholtz Centre for Ocean Research Kiel. He added, “Spatial variability in sulfate deposition means that the accuracy of volcanic sulfate reconstructions depends strongly on having a sufficient number of ice core records from as many different regions of Antarctica as possible.”

With such an accurately synchronized and robust array, Sigl and his colleagues were able to revise reconstructions of past volcanic aerosol loading that are widely used today in climate model simulations. Most notably, the research found that the two largest volcanic eruptions in recent Earth history (Samalas in 1257 and Kuwae in 1458) deposited 30 to 35 percent less sulfate in Antarctica, suggesting that these events had a weaker cooling effect on global climate than previously thought.

Desert Research Institute – Header Image : WikiPedia

- Advertisement -

Stay Updated: Follow us on iOS, Android, Google News, Facebook, Instagram, Twitter, Threads, TikTok, LinkedIn, and our newsletter

spot_img
Mark Milligan
Mark Milligan
Mark Milligan is a multi-award-winning journalist and the Managing Editor at HeritageDaily. His background is in archaeology and computer science, having written over 8,000 articles across several online publications. Mark is a member of the Association of British Science Writers (ABSW), the World Federation of Science Journalists, and in 2023 was the recipient of the British Citizen Award for Education, the BCA Medal of Honour, and the UK Prime Minister's Points of Light Award.
spot_img
spot_img

Mobile Application

spot_img

Related Articles

Study identifies urban metropolis at X’baatún

Significant progress is being made in the recognition and documentation of X’baatún, a little-known Maya archaeological site located within Oxwatz Park in the ejido of Tekal de Venegas, Yucatán.

LiDAR reveals lost ancient landscape in Andean Chocó

Deep beneath the dense rainforest of the Andean Chocó, north-west of Quito, an ancient pre-Hispanic landscape is emerging using LiDAR (Light Detection and Ranging).

Pristine medieval gold ring discovered in Tønsberg

For most archaeologists, the chance to unearth a pristine artefact from the medieval period is a once-in-a-lifetime event.

Ancient purification bath found beneath Western Wall Plaza

A rock-cut mikveh from the late Second Temple period has been uncovered during excavations beneath Jerusalem’s Western Wall Plaza.

Rare Roman-Era enamelled fibula found near Grudziądz

A rare, enamelled fibula unearthed near Grudziądz is being hailed as only the second discovery of its kind in Poland.

War crimes of the Red Army unearthed near Duczów Małe

Archaeologists from POMOST – the Historical and Archaeological Research Laboratory – have uncovered physical evidence of war crimes committed by the Red Army during WWII.

Prehistoric tomb rediscovered on the Isle of Bute

An early Bronze Age tomb has been rediscovered on the Isle of Bute, an island in the Firth of Clyde in Scotland.

Flail-type weapon associated with Battle of Grunwald discovered near Gietrzwałd

A flail type weapon known as a kiścień has been discovered by detectorists from the Society of Friends of Olsztynek - Exploration Section "Tannenberg".