Date:

Rocky Planet Discovered in Virgo Constellation Could Change Search For Life in Universe

A newly discovered planet could be our best chance yet of studying rocky planet atmospheres outside the solar system, a new international study involving UNSW Sydney shows.

The planet, called Gliese 486b (pronounced Glee-seh), is a ‘super-Earth’: that is, a rocky planet bigger than Earth but smaller than ice giants like Neptune and Uranus. It orbits a red dwarf star around 26 light-years away, making it a close neighbour – galactically speaking.

- Advertisement -

With a piping-hot surface temperature of 430 degrees Celsius, Gliese 486b is too hot to support human life. But studying its atmosphere could help us learn whether similar planets might be habitable for humans – or if they’re likely to hold other signs of life.

“This is the kind of planet we’ve been dreaming about for decades,” says Dr Ben Montet, an astronomer and Scientia Lecturer at UNSW Science and co-author of the study.

“We’ve known for a long time that rocky super-Earths must exist around the nearby stars, but we haven’t had the technology to search for them until recently.

“This finding has the potential to transform our understanding of planetary atmospheres.”

- Advertisement -

Like Earth, Gliese 486b is a rocky planet – but that’s where the similarities end.

Our neighbour is 30 per cent bigger and almost three times heavier than Earth. It’s possible that its surface – which is hot enough to melt lead – may even be scattered with glowing lava rivers.

Super-Earths themselves aren’t rare, but Gliese 486b special for two key reasons: firstly, its heat ‘puffs up’ the atmosphere, helping astronomers take atmospheric measurements; and secondly, it’s a transiting planet, which means it crosses over its star from Earth’s perspective – making it possible for scientists to conduct in-depth analysis of its atmosphere.

“Understanding super-Earths is challenging because we don’t have any examples in our backyard,” says Dr Montet.

“Gliese 486b is the type of planet we’ll be studying for the next 20 years.”

Lessons from the atmosphere

A planet’s atmosphere can reveal a lot about its ability to support life.

For example, a lack of atmosphere might suggest the planet’s nearby star is volatile and prone to high stellar activity – making it unlikely that life will have a chance to develop. On the other hand, a healthy, long-lived atmosphere could suggest conditions are stable enough to support life.

Both options help astronomers solve a piece of the planetary formation puzzle.

“We think Gliese 486b could have kept a part of its original atmosphere, despite being so close to its red dwarf star,” says Dr Montet.

“Whatever we learn about the atmosphere will help us better understand how rocky planets form.”

As a transiting planet, Gliese 486b gives scientists two unique opportunities to study its atmosphere: first when the planet passes in front of its star and a fraction of starlight shines through its atmospheric layer (a technique called ‘transmission spectroscopy’); and then when starlight illuminates the surface of the planet as it orbits around and behind the star (called ’emission spectroscopy’).

In both cases, scientists use a spectrograph – a tool that splits light according to its wavelengths – to decode the chemical makeup of the atmosphere.

“This is the single best planet for studying emission spectroscopy of all the rocky planets we know,” says Dr Montet.

“It’s also the second-best planet to study transmission spectroscopy.”

Life on Gliese 486b

Gliese 486b is a great catch for astronomers – but you wouldn’t want to live there, says Dr Montet.

“With a surface of 430 degrees Celsius, you wouldn’t be able to go outside without some kind of spacesuit,” he says.

“The gravity is also 70 per cent stronger than on Earth, making it harder to walk and jump. Someone who weighed 50 kilograms on Earth would feel like they weighed 85 kilograms on Gliese 486b.”

On the plus side, the quick transition of the planet around its star means that interstellar visitors would have a birthday every 36 hours.

They would just need to expect the party to be interrupted.

“The planet is really close to its star, which means you’d really have to watch out for stellar storms,” says Dr Montet.

“The impacts could be as innocuous as beautiful aurorae covering the sky, or they could completely wipe out electromagnetic systems.”

But despite these dangers of living on Gliese 486b, Dr Montet says it’s too valuable a planet to cross off our interstellar bucket list just yet.

“If humans are able to travel to other star systems in the future, this is one of the planets that would be on our list,” he says.

“It’s so nearby and so different than the planets in our own solar system.”

Narrowing the search for habitable planets

The study was part of the CARMENES project, a consortium of eleven Spanish and German research institutions that look for signs of low-mass planets around red dwarf stars.

Red dwarfs are the most common type of star, making up around 70 per cent of all stars in the universe. They are also much more likely to have rocky planets than Sun-like stars.

Based on these numbers, the best chance for finding life in the universe may be looking around red dwarfs, says Dr Montet – but this comes with a catch.

“Red dwarfs are known to have a lot of stellar activity, like flares and coronal mass ejections,” says Dr Montet. “This kind of activity threatens to destroy a planet’s atmosphere.

“Measuring Gliese 486b’s atmosphere will go a long way towards deciding if we should consider looking for signs of life around red dwarfs.”

UNIVERSITY OF NEW SOUTH WALES

Header Image Credit : renderarea.com

- Advertisement -

Stay Updated: Follow us on iOS, Android, Google News, Facebook, Instagram, Twitter, Threads, TikTok, LinkedIn, and our newsletter

spot_img
Mark Milligan
Mark Milligan
Mark Milligan is a multi-award-winning journalist and the Managing Editor at HeritageDaily. His background is in archaeology and computer science, having written over 8,000 articles across several online publications. Mark is a member of the Association of British Science Writers (ABSW), the World Federation of Science Journalists, and in 2023 was the recipient of the British Citizen Award for Education, the BCA Medal of Honour, and the UK Prime Minister's Points of Light Award.
spot_img
spot_img

Mobile Application

spot_img

Related Articles

Ceremonial club heads among new discoveries in lost Chachapoyas city

Archaeologists have discovered two ceremonial club heads and approximately 200 pre-Hispanic structures belonging to the ancient Chachapoyas culture during a study in the La Jalca district, located in Chachapoyas province, Amazonas.

Neanderthal “workshop” unearthed in Mazovia

A team of archaeologists from the State Archaeological Museum in Warsaw, the University of Warsaw, and the University of Wrocław, have unearthed an ancient Neanderthal workshop in Mazovia, Poland.

Hindu idols and Shiva Lingams found in submerged structure

A collection of ancient Hindu idols and Shiva Lingams were unearthed during restoration works of a sacred spring in the Karkoot Nag area of Aishmuqam, South Kashmir.

Hidden legacy: 90% of Palenque yet to be explored

According to Mexico’s Ministry of Tourism, more than 90% of the Maya city-state of Palenque is yet to be explored by archaeologists.

Sacrificial pits reveal mysterious Neolithic practices

Archaeologists have uncovered 5,000-year-old sacrificial pits near Gerstewitz in Saxony-Anhalt, Germany, revealing a haunting glimpse into ancient ritual practices.

Excavation begins in Poland for alleged Nazi gold Hoard

Following an application made to the Municipal Office in Walbrzych, a group of researchers have been granted permission to excavate a suspected WWII German bunker, rumoured to contain a hidden trove of Nazi gold and looted art.

Bronze Age treasures found in high status tomb

A team of archaeologists excavating in the Tepe Chalow area of northeastern Iran have discovered a Bronze Age tomb containing 34 ornately crafted grave goods.

Unprecedented 3D polychrome mural discovery

An ancient 3D polychrome mural dating back 3,000 to 4,000 years has been discovered at the Huaca Yolanda archaeological site in the La Libertad region of Peru.