Date:

Geoscientists Use Zircon to Trace Origin of Earth’s Continents

Geoscientists have long known that some parts of the continents formed in the Earth’s deep past, but the speed in which land rose above global seas — and the exact shapes that land masses formed — have so far eluded experts.

But now, through analyzing roughly 600,000 mineral analyses from a database of about 7,700 different rock samples, a team led by Jesse Reimink, assistant professor of geosciences at Penn State, thinks they’re getting closer to the answers.

- Advertisement -

The researchers say that Earth’s land masses began to slowly rise above sea level about 3 billion years ago. When their interpretation is combined with previous work, including work from other Penn State researchers, it suggests that continents took roughly 500 million years to rise to their modern heights, according to findings recently published in Earth and Planetary Science Letters.

To reach this conclusion, scientists applied a unique statistical analysis to crystallization ages from the mineral zircon, which is reliably dateable and is frequently found in sedimentary rocks. While these researchers did not date these samples, the samples were all dated using the the uranium-lead decay system. This method measures the amount of lead in a sample and calculates from the well established rate of uranium decay, the age of the crystal. When zirconium forms, no lead is incorporated into its structure, so any lead is from uranium decay.

The minerals found in the sedimentary rock samples originally formed in older magmas but, through erosion and transport, traveled in rivers and were eventually deposited in the ocean where they were turned into sedimentary rock beneath the surface of the sea floor. The ages of zircons retrieved from individual rock samples can be used to tell the type of continent they were eroded from.

The ages of zircons from Eastern North American rocks are, for instance, different from those of land masses such as Japan, which was formed by much more recent volcanic activity.

- Advertisement -

“If you look at the Mississippi River, it’s eroding rocks and zircons from all over North America. It’s gathering mineral grains that have a massive age range from as young as a million years to as old as a few billions of years,” Reimink said. “Our analysis suggests that as soon as sediment started to be formed on Earth they were formed from sedimentary basins with a similarly large age range.”

Sediments are formed from weathering of older rocks, and carry the signature of past landmass in time capsules such as zircons. The research doesn’t uncover the overall size of primordial continents, but it does speculate that modern-scale watersheds were formed as early as 2.7 billion years ago.

“Our research matches nicely with the preserved rock record,” Reimink said.

This finding is critical for a few reasons. First, knowing when and how the continents formed advances research on the carbon cycle in the land, water and atmosphere. Secondly, it gives us clues as to the early origins of Earth. That could prove useful as we discover more about life and the formation of other planets. Earth is a life-sustaining planet, in part, because of how continental crust influences our atmospheric and oceanic composition. Knowing how and when these processes occurred could hold clues to the creation of life.

“Whenever we’re able to determine processes that led to our existence, it relates to the really profound questions such as: Are we unique? Is Earth unique in the universe? And are there other Earths out there,” Reimink said. “These findings help lead us down the path to the answers we need about Earth that allow us to compare our planet to others.”

PENN STATE

Header Image Credit: Lech Darski – CC BY-SA 4.0

- Advertisement -

Stay Updated: Follow us on iOS, Android, Google News, Facebook, Instagram, Twitter, Threads, TikTok, LinkedIn, and our newsletter

spot_img
Mark Milligan
Mark Milligan
Mark Milligan is a multi-award-winning journalist and the Managing Editor at HeritageDaily. His background is in archaeology and computer science, having written over 8,000 articles across several online publications. Mark is a member of the Association of British Science Writers (ABSW), the World Federation of Science Journalists, and in 2023 was the recipient of the British Citizen Award for Education, the BCA Medal of Honour, and the UK Prime Minister's Points of Light Award.
spot_img
spot_img

Mobile Application

spot_img

Related Articles

Unparalleled Bronze Age discovery

Detectorists from the Kociewskie Poszukiwacze Association have discovered a perfectly preserved Bronze Age bracelet, described by experts as unparalleled.

British Bronze Age sickle unearthed in Lower Seine Valley

Archaeologists from the National Institute for Preventive Archaeological Research (INRAP) have announced the discovery of a Bronze Age sickle in France’s Lower Seine Valley.

Thracian warrior tomb discovered in Bulgaria

A Thracian warrior tomb has been discovered in Bulgaria’s Topolovgrad region, which archaeologists have described as the country’s richest example from the Hellenistic-era.

Archaeology community mourns the passing of John Ward

John Ward was a British archaeologist from Hereford, who co‑founded the Gebel el‑Silsila Survey Project in 2012 alongside his wife, Dr. Maria Nilsson of Lund University.

Ceremonial club heads among new discoveries in lost Chachapoyas city

Archaeologists have discovered two ceremonial club heads and approximately 200 pre-Hispanic structures belonging to the ancient Chachapoyas culture during a study in the La Jalca district, located in Chachapoyas province, Amazonas.

Neanderthal “workshop” unearthed in Mazovia

A team of archaeologists from the State Archaeological Museum in Warsaw, the University of Warsaw, and the University of Wrocław, have unearthed an ancient Neanderthal workshop in Mazovia, Poland.

Hindu idols and Shiva Lingams found in submerged structure

A collection of ancient Hindu idols and Shiva Lingams were unearthed during restoration works of a sacred spring in the Karkoot Nag area of Aishmuqam, South Kashmir.

Hidden legacy: 90% of Palenque yet to be explored

According to Mexico’s Ministry of Tourism, more than 90% of the Maya city-state of Palenque is yet to be explored by archaeologists.