Crystals May Help Reveal Hidden Kilauea Volcano Behaviour

Related Articles

Related Articles

Scientists striving to understand how and when volcanoes might erupt face a challenge: many of the processes take place deep underground in lava tubes churning with dangerous molten Earth. Upon eruption, any subterranean markers that could have offered clues leading up to a blast are often destroyed.

But by leveraging observations of tiny crystals of the mineral olivine formed during a violent eruption that took place in Hawaii more than half a century ago, Stanford University researchers have found a way to test computer models of magma flow, which they say could reveal fresh insights about past eruptions and possibly help predict future ones.

“We can actually infer quantitative attributes of the flow prior to eruption from this crystal data and learn about the processes that led to the eruption without drilling into the volcano,” said Jenny Suckale, an assistant professor of geophysics at Stanford’s School of Earth, Energy & Environmental Sciences (Stanford Earth). “That to me is the Holy Grail in volcanology.”

 

The millimeter-sized crystals were discovered entombed in lava after the 1959 eruption of Kilauea Volcano in Hawaii. An analysis of the crystals revealed they were oriented in an odd, but surprisingly consistent pattern, which the Stanford researchers hypothesized was formed by a wave within the subsurface magma that affected the direction of the crystals in the flow.

“I always had the suspicion that these crystals are way more interesting and important than we give them credit for,” said Suckale, who is senior author on the study.

Detective work

It was a chance encounter that prompted Suckale to act upon her suspicion. She had an insight while listening to a Stanford graduate student’s presentation about microplastics in the ocean, where waves can cause non-spherical particles to assume a consistent misorientation pattern. Suckale recruited the speaker, then-PhD student Michelle DiBenedetto, to see if the theory could be applied to the odd crystal orientations from Kilauea.

“This is the result of the detective work of appreciating the detail as the most important piece of evidence,” Suckale said.

Along with Zhipeng Qin, a research scientist in geophysics, the team analyzed crystals from scoria, a dark, porous rock that forms upon the cooling of magma containing dissolved gases. When a volcano erupts, the liquid magma – known as lava once it reaches the surface – is shocked by the cooler atmospheric temperature, quickly entrapping the naturally occurring olivine crystals and bubbles. The process happens so rapidly that the crystals cannot grow, effectively capturing what happened during eruption.

The new simulation is based on crystal orientations from Kilauea Iki, a pit crater next to the main summit caldera of Kilauea Volcano. It provides a baseline for understanding the flow of Kilauea’s conduit, the tubular passage through which hot magma below ground rises to the Earth’s surface. Because the scoria can be blown several hundred feet away from the volcano, these samples are relatively easy to collect. “It’s exciting that we can use these really small-scale processes to understand this huge system,” said DiBenedetto, the lead author of the study, now a postdoctoral scholar at the Woods Hole Oceanographic Institution.

Catching a wave

In order to remain liquid, the material within a volcano needs to be constantly moving. The team’s analysis indicates the odd alignment of the crystals was caused by magma moving in two directions at once, with one flow directly atop the other, rather than pouring through the conduit in one steady stream. Researchers had previously speculated this could happen, but a lack of direct access to the molten conduit barred conclusive evidence, according to Suckale.

“This data is important for advancing our future research about these hazards because if I can measure the wave, I can constrain the magma flow – and these crystals allow me to get at that wave,” Suckale said.

Monitoring Kilauea from a hazard perspective is an ongoing challenge because of the active volcano’s unpredictable eruptions. Instead of leaking lava continuously, it has periodic bursts resulting in lava flows that endanger residents on the southeast side of the Big Island of Hawaii.

Tracking crystal misorientation throughout the different stages of future Kilauea eruptions could enable scientists to deduce conduit flow conditions over time, the researchers say.

“No one knows when the next episode is going to start or how bad it’s going to be – and that all hinges on the details of the conduit dynamics,” Suckale said.

STANFORD UNIVERSITY

Header Image – A lava fountain during the 1959 eruption of Kilauea Iki. (Image credit: USGS) – Image Credit: USGS

Download the HeritageDaily mobile application on iOS and Android

More on this topic

LATEST NEWS

Study Sheds New Light on the Behaviour of the Giant Carnivorous Dinosaur Spinosaurus

New research from Queen Mary University of London and the University of Maryland, has reignited the debate around the behaviour of the giant dinosaur Spinosaurus.

New Skull of Tube-Crested Dinosaur Reveals Evolution of Bizarre Crest

The first new skull of a rare species of the dinosaur Parasaurolophus (recognized by the large hollow tube that grows on its head) discovered in 97 years.

Women Influenced Coevolution of Dogs and Humans

In a cross-cultural analysis, Washington State University researchers found several factors may have played a role in building the mutually beneficial relationship between humans and dogs, including temperature, hunting and surprisingly - gender.

Dinosaur Embryo Helps Crack Baby Tyrannosaur Mystery

They are among the largest predators ever to walk the Earth, but experts have discovered that some baby tyrannosaurs were only the size of a Border Collie dog when they took their first steps.

First People to Enter the Americas Likely Did so With Their Dogs

The first people to settle in the Americas likely brought their own canine companions with them, according to new research which sheds more light on the origin of dogs.

Climate Change in Antiquity: Mass Emigration Due to Water Scarcity

The absence of monsoon rains at the source of the Nile was the cause of migrations and the demise of entire settlements in the late Roman province of Egypt.

Archaeologists Discover Bas-Relief of Golden Eagle at Aztec Templo Mayor

A team of archaeologists from the Instituto Nacional de Antropologia e Historia (INAH) have announced the discovery of a bas-relief depicting an American golden eagle (aquila chrysaetos canadensis).

Lost Alaskan Fort of the Tlingit Discovered

Researchers from Cornell University and the National Park Service have discovered the remnants of a wooden fort in Alaska – the Tlingit people’s last physical bulwark against Russian colonisation forces in 1804.

Popular stories

Exploring the Stonehenge Landscape

The Stonehenge Landscape contains over 400 ancient sites, that includes burial mounds known as barrows, Woodhenge, the Durrington Walls, the Stonehenge Cursus, the Avenue, and surrounds the monument of Stonehenge which is managed by English Heritage.

The Iron Age Tribes of Britain

The British Iron Age is a conventional name to describe the independent Iron Age cultures that inhabited the mainland and smaller islands of present-day Britain.

The Roman Conquest of Wales

The conquest of Wales began in either AD 47 or 48, following the landing of Roman forces in Britannia sent by Emperor Claudius in AD 43.

Vallum Antonini – The Antonine Wall

The Antonine Wall (Vallum Antonini) was a defensive wall built by the Romans in present-day Scotland, that ran for 39 miles between the Firth of Forth, and the Firth of Clyde (west of Edinburgh along the central belt).