Date:

The Milky Way Galaxy has a Clumpy Halo

University of Iowa astronomers have determined our galaxy is surrounded by a clumpy halo of hot gases that is continually being supplied with material ejected by birthing or dying stars.

This heated halo, called the circumgalactic medium (CGM), was the incubator for the Milky Way’s formation some 10 billion years ago and could be where basic matter unaccounted for since the birth of the universe may reside.

The findings come from observations made by HaloSat, one of a class of minisatellites designed and built at Iowa–this one primed to look at the X-rays emitted by the CGM. The researchers conclude the CGM has a disk-like geometry, based on the intensity of X-ray emissions coming from it. The HaloSat minisatellite was launched from the International Space Station in May 2018 and is the first minisatellite funded by NASA’s Astrophysics Division.

“Where the Milky Way is forming stars more vigorously, there are more X-ray emissions from the circumgalactic medium,” says Philip Kaaret, professor in the Iowa Department of Physics and Astronomy and corresponding author on the study, published online in the journal Nature Astronomy. “That suggests the circumgalactic medium is related to star formation, and it is likely we are seeing gas that previously fell into the Milky Way, helped make stars, and now is being recycled into the circumgalactic medium.”

- Advertisement -

Each galaxy has a CGM, and these regions are crucial to understanding not only how galaxies formed and evolved but also how the universe progressed from a kernel of helium and hydrogen to a cosmological expanse teeming with stars, planets, comets, and all other sorts of celestial constituents.

HaloSat was launched into space in 2018 to search for atomic remnants called baryonic matter believed to be missing since the universe’s birth nearly 14 billion years ago. The satellite has been observing the Milky Way’s CGM for evidence the leftover baryonic matter may reside there.

To do that, Kaaret and his team wanted to get a better handle on the CGM’s configuration.

More specifically, the researchers wanted to find out if the CGM is a huge, extended halo that is many times the size of our galaxy–in which case, it could house the total number of atoms to solve the missing baryon question. But if the CGM is mostly comprised of recycled material, it would be a relatively thin, puffy layer of gas and an unlikely host of the missing baryonic matter.

“What we’ve done is definitely show that there’s a high-density part of the CGM that’s bright in X-rays, that makes lots of X-ray emissions,” Kaaret says. “But there still could be a really big, extended halo that is just dim in X-rays. And it might be harder to see that dim, extended halo because there’s this bright emission disc in the way.

“So it turns out with HaloSat alone, we really can’t say whether or not there really is this extended halo.”

Kaaret says he was surprised by the CGM’s clumpiness, expecting its geometry to be more uniform. The denser areas are regions where stars are forming, and where material is being traded between the Milky Way and the CGM.

“It seems as if the Milky Way and other galaxies are not closed systems,” Kaaret says. “They’re actually interacting, throwing material out to the CGM and bringing back material as well.”

The next step is to combine the HaloSat data with data from other X-ray observatories to determine whether there’s an extended halo surrounding the Milky Way, and if it’s there, to calculate its size. That, in turn, could solve the missing baryon puzzle.

“Those missing baryons better be somewhere,” Kaaret says. “They’re in halos around individual galaxies like our Milky Way or they’re located in filaments that stretch between galaxies.”

UNIVERSITY OF IOWA

Header Image Credit : Public Domain

- Advertisement -
Mark Milligan
Mark Milligan
Mark Milligan is multi-award-winning journalist and the Managing Editor at HeritageDaily. His background is in archaeology and computer science, having written over 7,500 articles across several online publications. Mark is a member of the Association of British Science Writers (ABSW), the World Federation of Science Journalists, and in 2023 was the recipient of the British Citizen Award for Education, the BCA Medal of Honour, and the UK Prime Minister's Points of Light Award.

Mobile Application

spot_img

Related Articles

Excavation of medieval shipbuilders reveals a Roman head of Mercury

Excavations of a medieval shipbuilders has led to the discovery of a Roman settlement and a Roman head of Mercury.

Researchers find that Żagań-Lutnia5 is an Iron Age stronghold

Archaeologists have conducted a ground penetrating radar (GPR) survey of Żagań-Lutnia5, revealing that the monument is an Iron Age stronghold.

Rare copper dagger found in Polish forest

A rare copper dagger from over 4,000-years-ago has been discovered in the forests near Korzenica, southeastern Poland.

Neanderthals created stone tools held together by a multi-component adhesive

A new study published in the journal Science Advances has found evidence of Neanderthals creating stone tools that are held together using a multi-component adhesive.

Roman funerary altar found partially buried in Torre river

Archaeologists have recovered a Roman funerary altar which was found partially buried in the Torree river in the municipality of San Vito al Torre, Italy.

Post-medieval township discovered in Scottish forest

Archaeologists have uncovered the remains of a pre-medieval township in the Glen Brittle Forest on the Isle of Skye.

Geophysical study finds evidence of “labyrinth” buried beneath Mitla

A geophysical study has found underground structures and tunnels beneath Mitla – The Zapotec “Place of the Dead”

Discovery of a Romanesque religious structure rewrites history of Frauenchiemsee

Archaeologists from the Bavarian State Office for Monument Preservation have announced the discovery of a Romanesque religious structure on the island of Frauenchiemsee, the second largest of the three islands in Chiemsee, Germany.