New Research Proves the Feasibility of Retrieving Bacterial DNA From Ancient Latrines

Related Articles

Related Articles

New study demonstrates methods of ancient bacterial detection, pioneered in studies of past epidemics, to characterize the microbial diversity of ancient gut contents from two medieval latrines.

The findings provide insights into the microbiomes of pre-industrial agricultural populations, which may provide much-needed context for interpreting the health of modern microbiomes.

Over the years, scientists have noted that those living in industrialized societies have a notably different microbiome compared to hunter-gatherer communities around the world. From this, a growing body of evidence has linked changes in our microbiome to many of the diseases of the modern industrialized world, such as inflammatory bowel disease, allergies, and obesity. The current study helps to characterize the change in gut microbiomes and highlights the value of ancient latrines as sources of bio-molecular information.

 

Ancient Gut Microbiomes: Exploring the Bowels of History

Piers Mitchell of Cambridge University specializes in the gut contents of past people through analysis of unusual substrates. By looking at the contents of archaeological latrines and desiccated faeces under the microscope, he and his team have learned volumes about the intestinal parasites that plagued our ancestors.

“Microscopic analysis can show the eggs of parasitic worms that lived in the intestines, but many microbes in the gut are simply too small to see,” comments Mitchell. “If we are to determine what constitutes a healthy microbiome for modern people, we should start looking at the microbiomes of our ancestors who lived before antibiotic use, fast food, and the other trappings of industrialization.”

Kirsten Bos, a specialist in ancient bacterial DNA from the Max Planck Institute for the Science of Human History and co-leader the study, was first skeptical about the feasibility of investigating the contents of latrines that had long been out of order.

“At the outset we weren’t sure if molecular signatures of gut contents would survive in the latrines over hundreds of years. Many of our successes in ancient bacterial retrieval thus far have come from calcified tissues like bones and dental calculus, which offer very different preservation conditions. Nevertheless,” says Bos, “I was really hoping the data here would change my perspective.”

The team analyzed sediment from medieval latrines in Jerusalem and Riga, Latvia dating from the 14th-15th century CE. The first challenge was distinguishing bacteria that once formed the ancient gut from those that were introduced by the environment, an unavoidable consequence of working with archaeological material.

The researchers identified a wide range of bacteria, archaea, protozoa, parasitic worms, fungi and other organisms, including many taxa known to inhabit the intestines of modern humans.

“It seems latrines are indeed valuable sources for both microscopic and molecular information,” concludes Bos.

No Modern Matches for Ancient Microbiomes

Susanna Sabin, a doctoral alumna of the MPI-SHH who co-led the study, compared the latrine DNA to those from other sources, including microbiomes from industrial and foraging populations, as well as waste water and soil.

“We found that the microbiome at Jerusalem and Riga had some common characteristics – they did show similarity to modern hunter-gatherer microbiomes and modern industrial microbiomes, but were different enough that they formed their own unique group. We don’t know of a modern source that harbors the microbial content we see here.”

The use of latrines, where the faeces of many people are mixed together, allowed the researchers unprecedented insight into the microbiomes of entire communities.

“These latrines gave us much more representative information about the wider pre-industrial population of these regions than an individual faecal sample would have,” explains Mitchell. “Combining evidence from light microscopy and ancient DNA analysis allows us to identify the amazing variety of organisms present in the intestines of our ancestors who lived centuries ago.”

Despite the promise of this new approach for investigating the microbiome, challenges remain.

“We’ll need many more studies at other archaeological sites and time periods to fully understand how the microbiome changed in human groups over time,” says Bos. “However, we have taken a key step in showing that DNA recovery of ancient intestinal contents from past latrines can work.”

MAX PLANCK INSTITUTE FOR THE SCIENCE OF HUMAN HISTORY

Header Image Credit : Uldis Kaljis

Download the HeritageDaily mobile application on iOS and Android

More on this topic

LATEST NEWS

Study Sheds New Light on the Behaviour of the Giant Carnivorous Dinosaur Spinosaurus

New research from Queen Mary University of London and the University of Maryland, has reignited the debate around the behaviour of the giant dinosaur Spinosaurus.

New Skull of Tube-Crested Dinosaur Reveals Evolution of Bizarre Crest

The first new skull of a rare species of the dinosaur Parasaurolophus (recognized by the large hollow tube that grows on its head) discovered in 97 years.

Women Influenced Coevolution of Dogs and Humans

In a cross-cultural analysis, Washington State University researchers found several factors may have played a role in building the mutually beneficial relationship between humans and dogs, including temperature, hunting and surprisingly - gender.

Dinosaur Embryo Helps Crack Baby Tyrannosaur Mystery

They are among the largest predators ever to walk the Earth, but experts have discovered that some baby tyrannosaurs were only the size of a Border Collie dog when they took their first steps.

First People to Enter the Americas Likely Did so With Their Dogs

The first people to settle in the Americas likely brought their own canine companions with them, according to new research which sheds more light on the origin of dogs.

Climate Change in Antiquity: Mass Emigration Due to Water Scarcity

The absence of monsoon rains at the source of the Nile was the cause of migrations and the demise of entire settlements in the late Roman province of Egypt.

Archaeologists Discover Bas-Relief of Golden Eagle at Aztec Templo Mayor

A team of archaeologists from the Instituto Nacional de Antropologia e Historia (INAH) have announced the discovery of a bas-relief depicting an American golden eagle (aquila chrysaetos canadensis).

Lost Alaskan Fort of the Tlingit Discovered

Researchers from Cornell University and the National Park Service have discovered the remnants of a wooden fort in Alaska – the Tlingit people’s last physical bulwark against Russian colonisation forces in 1804.

Popular stories

Exploring the Stonehenge Landscape

The Stonehenge Landscape contains over 400 ancient sites, that includes burial mounds known as barrows, Woodhenge, the Durrington Walls, the Stonehenge Cursus, the Avenue, and surrounds the monument of Stonehenge which is managed by English Heritage.

The Iron Age Tribes of Britain

The British Iron Age is a conventional name to describe the independent Iron Age cultures that inhabited the mainland and smaller islands of present-day Britain.

The Roman Conquest of Wales

The conquest of Wales began in either AD 47 or 48, following the landing of Roman forces in Britannia sent by Emperor Claudius in AD 43.

Vallum Antonini – The Antonine Wall

The Antonine Wall (Vallum Antonini) was a defensive wall built by the Romans in present-day Scotland, that ran for 39 miles between the Firth of Forth, and the Firth of Clyde (west of Edinburgh along the central belt).