Date:

New Insight Into The Evolution of Complex Life on Earth

A novel connection between primordial organisms and complex life has been discovered, as new evidence sheds light on the evolutionary origins of the cell division process that is fundamental to complex life on Earth.

The discovery was made by a cross-disciplinary team of scientists led by Professor Buzz Baum of University College London and Dr Nick Robinson of Lancaster University.

- Advertisement -

Their research, published in Science, sheds light on the cell division of the microbe Sulfolobusacidocaldarius, which thrives in acidic hot springs at temperatures of around 75°C. This microbe is classed among the unicellular organisms called archaea that evolved 3.5 billion years ago together with bacteria.

Eukaryotes evolved about 1 billion years later – likely arising from an endosymbiotic event in which an archaeal and bacterial cell merged. The resulting complex cells became a new division of life that now includes the protozoa, fungi, plants and animals.

Now a common regulatory mechanism has been discovered in the cell division of both archaea and eukaryotes after the researchers demonstrated for the first time that the proteasome – sometimes referred to as the waste disposal system of the cell – regulates the cell division in Sulfolobusacidocaldarius by selectively breaking down a specific set of proteins.

The authors report: “This is important because the proteasome has not previously been shown to control the cell division process of archaea.”

- Advertisement -

The proteasome is evolutionarily conserved in both archaea and eukaryotes and it is already well established that selective proteasome-mediated protein degradation plays a key role in the cell cycle regulation of eukaryotes.

These findings therefore shed new light on the evolutionary history of the eukaryotes.

The authors summarise: “It has become increasingly apparent that the complex eukaryotic cells arose following an endosymbiotic event between an ancestral archaeal cell and an alpha-proteobacterium, which subsequently became the mitochondria within the resulting eukaryotic cell. Our study suggests that the vital role of the proteasome in the cell cycle of all eukaryotic life today has its evolutionary origins in archaea.”

Lancaster University

- Advertisement -

Stay Updated: Follow us on iOS, Android, Google News, Facebook, Instagram, Twitter, Threads, TikTok, LinkedIn, and our newsletter

spot_img
Mark Milligan
Mark Milligan
Mark Milligan is a multi-award-winning journalist and the Managing Editor at HeritageDaily. His background is in archaeology and computer science, having written over 8,000 articles across several online publications. Mark is a member of the Association of British Science Writers (ABSW), the World Federation of Science Journalists, and in 2023 was the recipient of the British Citizen Award for Education, the BCA Medal of Honour, and the UK Prime Minister's Points of Light Award.
spot_img
spot_img

Mobile Application

spot_img

Related Articles

Study identifies urban metropolis at X’baatún

Significant progress is being made in the recognition and documentation of X’baatún, a little-known Maya archaeological site located within Oxwatz Park in the ejido of Tekal de Venegas, Yucatán.

LiDAR reveals lost ancient landscape in Andean Chocó

Deep beneath the dense rainforest of the Andean Chocó, north-west of Quito, an ancient pre-Hispanic landscape is emerging using LiDAR (Light Detection and Ranging).

Pristine medieval gold ring discovered in Tønsberg

For most archaeologists, the chance to unearth a pristine artefact from the medieval period is a once-in-a-lifetime event.

Ancient purification bath found beneath Western Wall Plaza

A rock-cut mikveh from the late Second Temple period has been uncovered during excavations beneath Jerusalem’s Western Wall Plaza.

Rare Roman-Era enamelled fibula found near Grudziądz

A rare, enamelled fibula unearthed near Grudziądz is being hailed as only the second discovery of its kind in Poland.

War crimes of the Red Army unearthed near Duczów Małe

Archaeologists from POMOST – the Historical and Archaeological Research Laboratory – have uncovered physical evidence of war crimes committed by the Red Army during WWII.

Prehistoric tomb rediscovered on the Isle of Bute

An early Bronze Age tomb has been rediscovered on the Isle of Bute, an island in the Firth of Clyde in Scotland.

Flail-type weapon associated with Battle of Grunwald discovered near Gietrzwałd

A flail type weapon known as a kiścień has been discovered by detectorists from the Society of Friends of Olsztynek - Exploration Section "Tannenberg".