New study reveals how birds adapted for long distance flight

Related Articles

Related Articles

New research by the University of Bristol has revealed how birds adapted for long-distance flight which is linked to their environment and behaviour.

The Arctic tern flies from the Arctic to the Antarctic and back again each year, while the Inaccessible Island rail – the world’s smallest flightless bird – never leaves its five-square-mile island.

The way different organisms vary in how much they move around is a key factor in understanding and conserving biodiversity. Yet since tracking animal movement is difficult and expensive, there are still huge gaps in knowledge about animal movements and dispersal, particularly in more remote parts of the world. The good news is that bird wings offer a clue.

 

Measurements of wing shape – particularly a metric called the ‘hand wing index’, which reflects the elongation of the wing – can quantify how well the wing is adapted for long-distance flight and is easily measured from museum specimens.

New research published today in Nature Communications has analysed this index for over 10,000 species of birds, providing the first comprehensive study of a dispersal-linked trait across an entire class of animals.

A global team of researchers, led by the University of Bristol and Imperial College London, measured the wings of 45,801 birds in museums and field sites around the world.

From these, the team created a map of the global variation in wing shape, showing that the best-adapted fliers were primarily found in high latitudes while birds adapted to more sedentary lifestyles were generally found in the tropics.

By analysing these values along the bird family tree, together with detailed information about each species’ environment, ecology, and behaviour, the authors found that this geographical gradient is primarily driven by three key variables: temperature variability, territory defence, and migration.

The study’s lead author, Dr Catherine Sheard from the University of Bristol’s School of Earth Sciences, said: “This geographic pattern is really striking. Given the role we know dispersal plays in evolutionary processes, from speciation to species interactions, we suspect this relationship between behaviour, the environment, and dispersal may be shaping other aspects of biodiversity.”

Examples of fundamental patterns potentially explained by variation in dispersal include the smaller geographical ranges noted in tropical species.

Dr Joseph Tobias, senior author of the study, based at Imperial College London, added: “We hope our measures of wing shape for over 10,000 bird species will have numerous practical applications, particularly in ecology and conservation biology, where so many important processes are regulated by dispersal.”

UNIVERSITY OF BRISTOL

Header Image Credit : Pjt56

Download the HeritageDaily mobile application on iOS and Android

More on this topic

LATEST NEWS

Giant Sand Worm Discovery Proves Truth is Stranger Than Fiction

Simon Fraser University researchers have found evidence that large ambush-predatory worms--some as long as two metres--roamed the ocean floor near Taiwan over 20 million years ago.

Burial Practices Point to an Interconnected Early Medieval Europe

Early Medieval Europe is frequently viewed as a time of cultural stagnation, often given the misnomer of the 'Dark Ages'. However, analysis has revealed new ideas could spread rapidly as communities were interconnected, creating a surprisingly unified culture in Europe.

New Starfish-Like Fossil Reveals Evolution in Action

Researchers from the University of Cambridge have discovered a fossil of the earliest starfish-like animal, which helps us understand the origins of the nimble-armed creature.

Mars Crater Offers Window on Temperatures 3.5 Billion Years Ago

Once upon a time, seasons in Gale Crater probably felt something like those in Iceland. But nobody was there to bundle up more than 3 billion years ago.

Early Humans Used Chopping Tools to Break Animal Bones & Consume the Bone Marrow

Researchers from the Sonia and Marco Nadler Institute of Archaeology at Tel Aviv University unraveled the function of flint tools known as 'chopping tools', found at the prehistoric site of Revadim, east of Ashdod.

50 Million-Year-Old Fossil Assassin Bug Has Unusually Well-Preserved Genitalia

The fossilized insect is tiny and its genital capsule, called a pygophore, is roughly the length of a grain of rice.

Dinosaur-Era Sea Lizard Had Teeth Like a Shark

New study identifies a bizarre new species suggesting that giant marine lizards thrived before the asteroid wiped them out 66 million years ago.

The Iron Age Tribes of Britain

The British Iron Age is a conventional name to describe the independent Iron Age cultures that inhabited the mainland and smaller islands of present-day Britain.

Popular stories

The Iron Age Tribes of Britain

The British Iron Age is a conventional name to describe the independent Iron Age cultures that inhabited the mainland and smaller islands of present-day Britain.

The Roman Conquest of Wales

The conquest of Wales began in either AD 47 or 48, following the landing of Roman forces in Britannia sent by Emperor Claudius in AD 43.

Vallum Antonini – The Antonine Wall

The Antonine Wall (Vallum Antonini) was a defensive wall built by the Romans in present-day Scotland, that ran for 39 miles between the Firth of Forth, and the Firth of Clyde (west of Edinburgh along the central belt).

Vallum Aulium – Hadrian’s Wall

Hadrian’s Wall (Vallum Aulium) was a defensive fortification in Roman Britannia that ran 73 miles (116km) from Mais at the Solway Firth on the Irish Sea to the banks of the River Tyne at Segedunum at Wallsend in the North Sea.