Date:

Journey to the center of the Earth – First of its kind experiment uses diamond anvils to simulate the Earth’s core

In an effort to investigate conditions found at the Earth’s molten outer core, researchers successfully determined the density of liquid iron and sound propagation speed through it at extremely high pressures.

They achieved this with use of a highly specialized diamond anvil which compresses samples, and sophisticated X-ray measurements. Their findings confirm the molten outer core is less dense than liquid iron and also put values on the discrepancy.

- Advertisement -

Jules Verne’s 1864 novel Journey to the Center of the Earth takes explorers on an imaginative trip down to the Earth’s core where they find a gargantuan hollow cavern hosting a prehistoric environment, and dinosaurs. They get there thanks to a tanklike drilling machine which navigates through volcanoes. It sounds fun, but needless to say, it’s a far cry from reality, where researchers explore the inner Earth with a range of techniques and instruments from the comparative safety of the Earth’s surface.

Seismic apparatus which measure how earthquakes travel through the planet are pivotal to map some of the larger structural arrangements within the Earth, and thanks to this it has long been known that at the heart of the Earth lies a solid core surrounded by a less dense liquid outer core. For the first time, experiments and simulations have shown researchers details about this outer core which were previously unobtainable. And these experiments include some fascinating details.

“Recreating conditions found at the center of the Earth up here on the surface is not easy,” remarked Project Assistant Professor Yasuhiro Kuwayama from the Department of Earth and Planetary Science. “We used a diamond anvil to compress a sample of liquid iron subject to intense heat. But more than just creating the conditions, we needed to maintain them long enough to take our measurements. This was the real challenge.”

It is harder to measure the density of a liquid sample than a solid one as it takes the apparatus longer to do so. But with a unique experimental set up crafted over two decades, centered around the diamond anvil, Kuwayama and his team maintained their sample sufficiently to collect the data they required. They used a highly focused X-ray source from the SPring-8 synchrotron in Japan to probe the sample and measure its density.

- Advertisement -

“We found the density of liquid iron such as you’d find in the outer core to be about 10 tons per cubic meter at a pressure of 116 gigapascals, and the temperature to be 4,350 Kelvin,” explained Kuwayama. “For reference, typical room temperature is about 273 Kelvin. So this sample is over 16 times hotter than your room, and 10 times denser than water.”

When compared to this new measurement, the density of the Earth’s outer core appears to be about 8 percent less dense than pure liquid iron. The suggestion here is that there are additional lighter elements in the molten outer core which are currently unidentified. This research could aid others in their quest to reveal more unobtainable secrets from deep within the Earth.

“It’s important to investigate these things to understand more, not only about the Earth’s core, but about the composition, and thus behavior, of other planets as well,” concluded Kuwayama. “It’s important to note that it was not just elaborate equipment that helped us find this new information, but also meticulous mathematical modeling and analytical methods. We were pleasantly surprised by how effective this approach was and hope it can lead to a greater understanding of the world beneath our feet.”

University of Tokyo

Header Image Credit : Johan Swanepoel – Shutterstock

- Advertisement -

Stay Updated: Follow us on iOS, Android, Google News, Facebook, Instagram, Twitter, Threads, TikTok, LinkedIn, and our newsletter

spot_img
Mark Milligan
Mark Milligan
Mark Milligan is a multi-award-winning journalist and the Managing Editor at HeritageDaily. His background is in archaeology and computer science, having written over 8,000 articles across several online publications. Mark is a member of the Association of British Science Writers (ABSW), the World Federation of Science Journalists, and in 2023 was the recipient of the British Citizen Award for Education, the BCA Medal of Honour, and the UK Prime Minister's Points of Light Award.
spot_img
spot_img

Mobile Application

spot_img

Related Articles

The forgotten Alexandria: Rediscovering a lost metropolis on the Tigris

For centuries, one of antiquity’s most important cities slipped quietly out of human memory.

Avar period discovery could rewrite Hungarian history

The construction of an electric vehicle plant in Szeged has led to the discovery of an extensive Avar-period archaeological complex.

High-status Bronze Age tombs excavated in Hala Sultan Tekke

Excavations in Hala Sultan Tekke have revealed two ancient chamber tombs containing high-status grave goods.

Mysterious tunnel found in Neolithic ditch enclosure

Archaeologists from the State Office for Heritage Management and Archaeology (LDA) have unearthed a mysterious tunnel within a Neolithic ditch enclosure near Reinstedt. Germany. 

Cross of Saint George discovered in Polish forest

An authorised metal detectorist has made the rare discovery of a St. George’s Cross in the Chełm State Forests in eastern Poland.

Excavations rewrite Cambridge’s riverside history

Excavations at Trumpington Meadows, on the southern end of Cambridge, have documented a multifaceted chronology of human life from the early Neolithic to the Anglo-Saxon period.

Pre-Hispanic funerary remains uncovered in Oaxaca

The National Institute of Anthropology and History (INAH), together with the Ministry of Culture of the Government of Mexico and the INAH Oaxaca Center, has confirmed the discovery of significant archaeological remains in the municipality of San Pedro Jaltepetongo, in the state of Oaxaca.

Bronze reliquary cross unearthed in ancient Lystra

A rare bronze reliquary cross has been discovered during excavations of a church complex in the ancient city of Lystra, located in the Meram district of Konya, central Türkiye.