Date:

Fossil record analysis hints at evolutionary origins of insects’ structural colors

Researchers from Yale-NUS College in Singapore and University College Cork (UCC) in Ireland have analysed preserved scales from wing cases of two fossil weevils from the Late Pleistocene era (approx. 13,000 years ago) to better understand the origin of light-scattering nanostructures present in present-day insects.

The researchers, led by Yale-NUS Assistant Professor of Science (Life Sciences) Vinod Kumar Saranathan and UCC paleobiologists Drs Luke McDonald and Maria McNamara, found that the wing cases of the fossil weevils contained preserved photonic ‘diamonds’, one of the many types of crystal like nanoscopic structure that interacts with light to produce some of the brightest and purest colours in nature.

- Advertisement -

The outer coverings of many insects comprise repeating units arranged in a crystalline formation that interact with visible light to produce structural colours, which typically have a metallic, iridescent appearance. For many of these insects, the iridescent colours perform a variety of functions including camouflage, signalling potential mates, and warning off predators. To date, the evolutionary history of these complex tissue structures has not been clearly defined. This study highlights the great potential of the fossil record as a means to unearth the evolutionary history of structural colours, not only in weevils but also in other insects, and paves the way for further research on the development of these light-scattering nanostructures and the vibrant colours they give rise to.

The researchers used powerful electron microscopes and state-of-the-art synchrotron X-ray scattering and optical modelling techniques to identify and characterise a rare 3D photonic crystal nanostructure in the fossil weevil scales – whose blue and green hues are very similar to those of modern weevils from the same genus – revealing a diamond-like arrangement. Instances of 3D nanostructures are extremely rare in the fossil record. This study marks the second time such nanostructures have been found. The only other instance of such nanostructures found in the fossil record of another weevil was also discovered by Asst Prof Saranathan and Dr McNamara.

The fact that very similar substrate-matching green colours have been maintained over hundreds of thousands of generations suggest that the same selective pressures for camouflage have been acting on these weevils. This is consistent with a recent study by Asst Prof Saranathan and weevil systematist Dr Ainsley Seago that suggests the weevils’ colours evolved initially for camouflage amongst their leafy background, before diversifying for other functions such as to signal potential mates or deter predators.

Asst Prof Saranathan, who holds a concurrent appointment at the National University of Singapore’s Department of Biological Sciences, said, “It is very interesting to discover that insects first seem to evolve complex 3D nanoscale architectures in order to escape predators by blending in with their background (usually brown or green). Only later do these colours diverge for other uses, such as signalling potential mates or as a warning to predators that the insect is not worth eating.”

- Advertisement -

YALE-NUS COLLEGE

Header Image – Artistic reconstruction of the type of weevil studied. Credit : James McKay

- Advertisement -

Stay Updated: Follow us on iOS, Android, Google News, Facebook, Instagram, Twitter, Threads, TikTok, LinkedIn, and our newsletter

spot_img
Mark Milligan
Mark Milligan
Mark Milligan is a multi-award-winning journalist and the Managing Editor at HeritageDaily. His background is in archaeology and computer science, having written over 8,000 articles across several online publications. Mark is a member of the Association of British Science Writers (ABSW), the World Federation of Science Journalists, and in 2023 was the recipient of the British Citizen Award for Education, the BCA Medal of Honour, and the UK Prime Minister's Points of Light Award.
spot_img
spot_img

Mobile Application

spot_img

Related Articles

New evidence indicates use of geothermal resources during Neolithic period

A new study conducted at Bagno dei Frati within the thermal complex of Terme di Sorano in Italy has revealed new evidence for the use of geothermal resources during the Neolithic period.

Early Roman marching camps confirm 3rd century advances in Germania

Archaeological investigations have led to the identification of the first confirmed Roman marching camps in the federal state of Saxony-Anhalt, providing the earliest structural evidence that Roman military units advanced into the interior of Germania as far as the Elbe River.

Submerged remains found at El Huarco Archaeological Complex

The Ministry of Culture has initiated a new research campaign in the marine area surrounding the El Huarco Archaeological Complex, a significant coastal heritage site located in the district of Cerro Azul, Cañete province, south of Lima.

Archaeologists uncover traces of Victorian school life

It’s rare for archaeologists to discover objects we can directly link to children, so a team from MOLA (Museum of London Archaeology) was delighted to uncover evidence of Victorian children’s schoolwork and play during recent excavations ahead of the development of SEGRO Park Wapping.

Rare 5th-century BC bone stylus discovered in Gela excavation

Archaeologists working in the Orto Fontanelle area of Gela have uncovered a remarkably rare and perfectly preserved bone ceramist’s stylus, a find being hailed as one of exceptional historical and archaeological value.

Nationally significant Anglo-Saxon burial ground uncovered at Sizewell C

Archaeologists have uncovered a nationally significant Anglo-Saxon burial ground during preparatory works for the Sizewell C nuclear power station in Suffolk.

Inscriptions reveal the lives behind the ancient temples of the Middle East

Stone temples rising from the deserts of the ancient Near East were meant to embody the power of the gods.

World’s oldest poison arrows discovered

Even in the deep Stone Age, humans possessed biochemical knowledge that appears extraordinary by modern standards.