Date:

Your back pain may be due to evolution and spine shape

The cause of back pain can be linked to humanity’s evolutionary past, according to new research from a team of bioarchaeologists at Simon Fraser University, the University of Liverpool, and the University of Sydney.

The study, published in Evolution, Medicine, and Public Health, examines why some people are more susceptible to a particular stress fracture known as spondylolysis – a condition that often affects athletes.

- Advertisement -

“Because spondylolysis only occurs in humans and does not affect our great ape cousins, it has long been assumed to be the result of increased stress placed on our spine by our unique ability to walk upright on two legs,” says SFU postdoctoral researcher Kimberly Plomp. “However, there have been few attempts to test this hypothesis.”

The researchers used advanced 3D shape analysis techniques to compare the final lumbar vertebrae of humans with and without spondylolysis to the same bones in our closest living relatives, the great apes.

The team found that the differences between human vertebrae with spondylolysis and great ape vertebrae were greater than those between healthy human vertebrae and great ape vertebrae. People who developed spondylolysis have vertebrae that are more wedge-shaped, where the front is taller than the back, in addition to other subtle shape differences. The differences are consistent with the vertebrae having “overshot” the optimum for walking on two legs, leaving the individual prone to developing spondylolysis.

The latest research is the third study that the researchers have conducted linking vertebral shape and back pain to the evolutionary history of our lineage. Previously, they have demonstrated that humans with intervertebral disc hernias have vertebrae that are more similar in shape to those of modern chimpanzees and those of our fossil ancestors than are humans with healthy spines.

- Advertisement -

“We can picture vertebral shape variation in humans as a spectrum with one end having vertebrae with an ancestral shape and the other end having vertebrae with exaggerated bipedal adaptations. Where an individual’s vertebrae lie within this distribution has a bearing on their spinal health,” says Mark Collard, SFU archaeology professor and Canada Research Chair in Human Evolutionary Studies.

“For decades, scholars have assumed that the reason humans are so commonly afflicted with back problems is because we walk on two legs,” says Plomp.” Our studies are the first to show a clear link between the shape of your vertebrae, bipedalism, and the health of your spine.”

Keith Dobney, professor of human palaeoecology at the University of Sydney and the University of Liverpool, adds: “This is an area requiring further study, but our data show that studying the past can have a direct bearing on current societal issues – in this case the prevention and management of back pain.”

SIMON FRASER UNIVERSITY

Header Image – SFU postdoctoral researcher Kimberly Plomp examines a vertebrae. Credit : Simon Fraser University

- Advertisement -

Stay Updated: Follow us on iOS, Android, Google News, Facebook, Instagram, Twitter, Threads, TikTok, LinkedIn, and our newsletter

spot_img
Mark Milligan
Mark Milligan
Mark Milligan is a multi-award-winning journalist and the Managing Editor at HeritageDaily. His background is in archaeology and computer science, having written over 8,000 articles across several online publications. Mark is a member of the Association of British Science Writers (ABSW), the World Federation of Science Journalists, and in 2023 was the recipient of the British Citizen Award for Education, the BCA Medal of Honour, and the UK Prime Minister's Points of Light Award.
spot_img
spot_img

Mobile Application

spot_img

Related Articles

Structure for observing celestial movements predates the Chankillo observatory

The Peruvian Ministry of Culture has announced the discovery of an early Andean structure that predates the Chankillo solar observatory – long regarded as the earliest known observatory in the Americas.

2,300-year-old fortified city discovered in Kashkadarya

Archaeologists from the Samarkand Institute in Kashkadarya, southern Uzbekistan, have announced a major discovery: the remains of a fortified city dating back 2,300 years.

Jewel “worthy of a duke” unearthed at Castle Kolno

Researchers from the Institute of Archaeology at the University of Wroclaw have unearthed a jewel “worthy of a duke” at Castle Kolno, located between the Stobrawa and Budkowiczanka rivers in Stare Kolnie, Poland.

Preserved 3rd century mosaic excavated in Iznik

Excavations in the İznik district of northwestern Türkiye have uncovered a preserved mosaic floor dating from the 3rd century AD.

Time capsule of medieval artefacts unearthed in Łasztownia excavation

Archaeologists have unearthed a time capsule of medieval artefacts on the island of Łasztownia in Szczecin, Poland.

Mask reliefs unearthed during Castabala excavations

Archaeologists have unearthed a new series of mask reliefs during excavations in the ancient city of Castabala, Turkey.

Bronze Age proto-city discovered on the Kazakh Steppe

Archaeologists have discovered a late Bronze-Age proto-city on the Kazakh Steppe in north-eastern Kazakhstan.

Altamura Man resolves long-standing debate over Neanderthal evolution

A preserved Neanderthal fossil is providing new insights into how this ancient human species adapted to the cold climates of Ice Age Europe.