New model suggests lost continents for early Earth

Related Articles

Related Articles

A new radioactivity model of Earth’s ancient rocks calls into question current models for the formation of Earth’s continental crust, suggesting continents may have risen out of the sea much earlier than previously thought but were destroyed, leaving little trace.

Scientists at the University of Adelaide have published two studies on a model of rock radioactivity over billions of years which found that the Earth’s continental crust may have been thicker, much earlier than current models suggest, with continents possibly present as far back as four billion years.

“We use this model to understand the evolving processes from early Earth to the present, and suggest that the survival of the early crust was dependent on the amount of radioactivity in the rocks – not random chance,” says Dr Derrick Hasterok, from the University of Adelaide’s Department of Earth Sciences and Mawson Centre for Geoscience.

“If our model proves to be correct, it may require revision to many aspects of our understanding of the Earth’s chemical and physical evolution, including the rate of growth of the continents and possibly even the onset of plate tectonics.”

Dr Hasterok and his PhD student Matthew Gard compiled 75,800 geochemical samples of igneous rocks (such as granite) with estimated ages of formation from around the continents. They estimated radioactivity in these rocks today and constructed a model of average radioactivity from four billion years ago to the present.

Models for the distribution of crustal thickness in early Earth. The crust in the prevailing paradigm is mostly oceanic, with some thin continental crust. The new model predicts a thicker and greater continental portion that was not preserved.


Subscribe to more articles like this by following our Google Discovery feed - Click the follow button on your desktop or the star button on mobile. Subscribe

“All rocks contain natural radioactivity that produces heat and raises temperatures in the crust when it decays – the more radioactive a rock the more heat it produces,” says Dr Hasterok.“Rocks typically associated with the continental crust have higher radioactivity than oceanic rocks. A rock four billion years old would have about four times as much radioactivity when it was created compared with today.”

But the researchers found an unexpected deficit in the level of radioactivity in rocks older than about two billion years. When they corrected for higher heat production, because of the higher radioactivity that would have been present, the deficit disappeared.

“We think there would have been more granite-like – or continental-type – rocks around but because of the higher radioactivity, and therefore higher heat, they either melted or were easily destroyed by tectonic movement. That’s why these continental crusts don’t show in the geological record.

“Our prevailing models suggest that continents eventually grew out of the oceans as the crust thickened. But we think there may have been significant amount of, albeit very unstable, continental crust much earlier.”

Co-author Professor Martin Hand, also from the University of Adelaide, says the new model could have important implications for monitoring the effects of global warming.

“What this new model allows us to do is help predict rock radioactivity in places where we have few or no samples, like Antarctica, where we cannot access samples, which could be very important in assessing the stability of ice sheets and the threshold of temperature changes needed for global warming to impact glacial melting,” says Martin Hand, Professor of Earth Sciences.

The researchers say the new radioactivity model also may help in the search for hot rocks with geothermal potential and can be used to produce more accurate models of oil maturation in sedimentary basins.

The studies are published in the journals Precambrian Research and Lithos.

This research aligns with the University’s industry engagement priority in energy, mining and resources and in tackling the grand challenges of sustainable energy and environmental sustainability.

The University of Adelaide

Header Image – Public Domain CC

- Advertisement -

Download the HeritageDaily mobile application on iOS and Android

More on this topic

LATEST NEWS

Study Suggests the Mystery of The Lost Colony of Roanoke Solved

The Roanoke Colony refers to two colonisation attempts by Sir Walter Raleigh to establish a permanent English settlement in North America.

Drones Map High Plateaus Basin in Moroccan Atlas to Understand Human Evolution

Researchers from the Centro Nacional de Investigación sobre la Evolución Humana (CENIEH) have been using drones to create high-resolution aerial images and topographies to compile maps of the High Plateaus Basin in Moroccan Atlas.

The Kerguelen Oceanic Plateau Sheds Light on the Formation of Continents

How did the continents form? Although to a certain extent this remains an open question, the oceanic plateau of the Kerguelen Islands may well provide part of the answer, according to a French-Australian team led by the Géosciences Environnement Toulouse laboratory.

Ancient Societies Hold Lessons for Modern Cities

Today's modern cities, from Denver to Dubai, could learn a thing or two from the ancient Pueblo communities that once stretched across the southwestern United States. For starters, the more people live together, the better the living standards.

Volubilis – The Ancient Berber City

Volubilis is an archaeological site and ancient Berber city that many archaeologists believe was the capital of the Kingdom of Mauretania.

Pella – Birthplace of Alexander The Great

Pella is an archaeological site and the historical capital of the ancient kingdom of Macedon.

New Argentine fossils uncover history of celebrated conifer group

Newly unearthed, surprisingly well-preserved conifer fossils from Patagonia, Argentina, show that an endangered and celebrated group of tropical West Pacific trees has roots in the ancient supercontinent that once comprised Australia, Antarctica and South America, according to an international team of researchers.

High-tech CT reveals ancient evolutionary adaptation of extinct crocodylomorphs

The tree of life is rich in examples of species that changed from living in water to a land-based existence.

Fish fossils become buried treasure

Rare metals crucial to green industries turn out to have a surprising origin. Ancient global climate change and certain kinds of undersea geology drove fish populations to specific locations.

Archaeologists Discover Viking Toilet in Denmark

Archaeologists excavating a settlement on the Stevns Peninsula in Denmark suggests they have discovered a toilet from the Viking Age.

Popular stories