New light into the recent evolution of the African rift valley

Related Articles

Related Articles

Continental rift valleys are huge fractures on the surface of our planet that progressively break continental plates with the eventual development of new oceans.

The African rift valley between Ethiopia and Kenia is a classical example of this geodynamic process. There, volcanism, earthquakes, and fracturing of the Earth’s surface result from the enormous forces that tear the eastern portion of the African continent apart. This system of linear valleys extending for thousands of kilometers is believed to result from the growth and propagation of isolated rift segments that evolve into a continuous zone of deformation. However, although instrumental in driving climate and biosphere of that region which in turn may have influenced habitats and the pattern of migration of human species in East Africa, and possibly even conditioned hominin evolution, this process is poorly documented and understood.

In a study published in Nature Communications and funded by the National Geographic Society, an international group of scientists from universities and research institutions from Ethiopia, France, Germany, Italy, New Zealand and the United Kingdom, of which Sascha Brune from the GFZ German Research Centre for Geosciences was a part, has shed new light into the recent evolution of the African rift valley. Its focus was on the spatial and temporal sequence of the propagation, interaction and linking of the Ethiopian rift section with the Kenyan part of the rift fracture. By conducting fieldwork in a remote area at the border between Ethiopia and Kenya, and integrating the results of that field campaign with laboratory analysis of volcanic rocks, analysis of the seismicity, morphology and numerical modelling, the authors have been able to reconstruct the geological history of an almost unknown sector of the African rift valley: the Ririba rift in South Ethiopia. The scientists showed that the Ririba trench formed about 3.7 million years ago as the southernmost advance of the Ethiopian rift segment.

Sascha Brune says: “In my research group at the GFZ we were able to substantiate the geological observations with numerical experiments. To this end, we brought together regional structures, deformation laws and basic physical equations to modelling in a supercomputer. In this way, we were able to show how the focusing of the rift valley contributed to a direct connection between the Kenyan and Ethiopian Rift.”

In contrast with previous theories of rifting in the region, the new data indicate that the southward growth was short-lived and aborted around 2.5 million years ago. At this time, deformation migrated westward into the Lake Turkana region, where the Ethiopian and Kenyan sectors of the rift valley are now directly connected. A later phase of volcanism, expressed by numerous lava flows and impressive explosive volcanic craters (maars), have since affected the Ririba area; however, this volcanic activity was unrelated to tectonic activity, opening new questions on how volcanism and faulting interact during rifting.

Overall, the results of this work provide new insights into the break-up of continents: “In the East African rift, we can observe processes that are important far beyond the region,” says Sascha Brune. “The same dynamics that determine the rift development in East Africa led to the opening of the Atlantic and Indian Oceans many millions of years ago and thus had a decisive influence on the face of the Earth.”


Subscribe to more articles like this by following our Google Discovery feed - Click the follow button on your desktop or the star button on mobile. Subscribe

GFZ GEOFORSCHUNGSZENTRUM POTSDAM, HELMHOLTZ CENTRE

Header Image – The East African Rift System stretches from the Red Sea to Mocambique. It is marked by the African Great Lakes and is currently the largest rift of the world. Credit : S. Brune; Kartengrundlage: Nasa-World-Wind

- Advertisement -

Download the HeritageDaily mobile application on iOS and Android

More on this topic

LATEST NEWS

Volubilis – The Ancient Berber City

Volubilis is an archaeological site and ancient Berber city that many archaeologists believe was the capital of the Kingdom of Mauretania.

Pella – Birthplace of Alexander The Great

Pella is an archaeological site and the historical capital of the ancient kingdom of Macedon.

New Argentine fossils uncover history of celebrated conifer group

Newly unearthed, surprisingly well-preserved conifer fossils from Patagonia, Argentina, show that an endangered and celebrated group of tropical West Pacific trees has roots in the ancient supercontinent that once comprised Australia, Antarctica and South America, according to an international team of researchers.

High-tech CT reveals ancient evolutionary adaptation of extinct crocodylomorphs

The tree of life is rich in examples of species that changed from living in water to a land-based existence.

Fish fossils become buried treasure

Rare metals crucial to green industries turn out to have a surprising origin. Ancient global climate change and certain kinds of undersea geology drove fish populations to specific locations.

Archaeologists Discover Viking Toilet in Denmark

Archaeologists excavating a settlement on the Stevns Peninsula in Denmark suggests they have discovered a toilet from the Viking Age.

Innovation by ancient farmers adds to biodiversity of the Amazon, study shows

Innovation by ancient farmers to improve soil fertility continues to have an impact on the biodiversity of the Amazon, a major new study shows.

Lost Shiva Temple Buried in Sand Discovered by Local Villagers

Villagers from the Perumallapadu village in the Pradesh’s Nellore district of India have unearthed the 300-year-old Temple of Nageswara Swamy on the banks of the Penna River.

Ma’rib – Capital of the Kingdom of Saba

Ma'rib is an archaeological site and former capital of the ancient kingdom of Saba in modern-day Ma'rib in Yemen

Giant Egg Discovered in Antarctica Belonged to Marine Reptile

A large fossil discovered in Antarctica by Chilean researchers in 2011 has been found to be a giant, soft-shell egg from 66 million years ago.

Popular stories