Date:

Sapphires and rubies in the sky

21 light years away from us in the constellation Cassiopeia, a planet orbits its star with a year that is just three days long. Its name is HD219134 b. With a mass almost five times that of Earth it is a so-called “super-Earth”.

Unlike the Earth however, it most likely does not have a massive core of iron, but is rich in calcium and aluminium. “Perhaps it shimmers red to blue like rubies and sapphires, because these gemstones are aluminium oxides which are com-mon on the exoplanet,” says Caroline Dorn, astrophysicist at the Institute for Computational Science of the University of Zurich. HD219134 b is one of three candidates likely to belong to a new, exotic class of exoplanets, as Caroline Dorn and her colleagues at the Universities of Zurich and Cambridge now report in the British journal MNRAS.

- Advertisement -

The researchers study the formation of planets using theoretical models and compare their results with data from observations. It is known that during their formation, stars such as the Sun were surrounded by a disc of gas and dust in which planets were born. Rocky planets like the Earth were formed out of the solid bodies leftover when the proto-planetary gas disc dispersed. These building blocks condensed out of the nebula gas as the disc cooled. “Nor-mally, these building blocks are formed in regions where rock-forming elements such as iron, magnesium and silicon have condensed,” explains Dorn who is associated to the NCCR Plan-etS. The resulting planets have an Earth-like composition with an iron core. Most of the su-per-Earths known so far have been formed in such regions.

The composition of super-Earths is more diverse than expected

But there are also regions close to the star where it is much hotter. “There, many elements are still in the gas phase and the planetary building blocks have a completely different com-position,” says the astrophysicist. With their models, the research team calculated what a planet being formed in such a hot region should look like. Their result: calcium and alumini-um are the main constituents alongside magnesium and silicon, and there is hardly any iron. “This is why such planets cannot, for example, have a magnetic field like the Earth,” says Dorn. And because the inner structure is so different, their cooling behavior and atmos-pheres will also differ from those of normal super-Earths. The team therefore speak of a new, exotic class of super-Earths formed from high-temperature condensates.

“What is exciting is that these objects are completely different from the majority of Earth-like planets,” says Dorn – “if they actually exist.” The probability is high, as the astrophysi-cists explain in their paper. “In our calculations we found that these planets have 10 to 20 percent lower densities than the Earth,” explains the first author. Other exoplanets with sim-ilarly low-densities were also analyzed by the team. “We looked at different scenarios to explain the observed densities,” says Dorn. For example, a thick atmosphere could lead to a lower overall density. But two of the exoplanets studied, 55 Cancri e and WASP-47 e, orbit their star so closely that their surface temperature is almost 3000 degrees and they would have lost this gas envelope long ago. “On HD219134 b it’s less hot and the situation is more complicated,” explains Dorn. At first glance, the lower density could also be explained by deep oceans. But a second planet orbiting the star a little further out makes this scenario unlikely. A comparison of the two objects showed that the inner planet cannot contain more water or gas than the outer one. It is still unclear whether magma oceans can contribute to the lower density.

- Advertisement -

“So, we have found three candidates that belong to a new class of super-Earths with this exotic composition” the astrophysicist summarizes. The researchers are also correcting an earlier image of super-Earth 55 Cancri e, which had made headlines in 2012 as the “diamond in the sky”. Researchers had previously assumed that the planet consisted largely of carbon, but had to abandon this theory on the basis of subsequent observations. “We are turning the supposed diamond planet into a sapphire planet,” laughs Dorn.

UNIVERSITY OF ZURICH

Header Image – Illustration of one of the exotic super-Earth candidates, 55 Cnc e, which are rich in sapphires and rubies and might shimmer in blue and red colors. Credit : Illustration: Thibaut Roger

- Advertisement -

Stay Updated: Follow us on iOS, Android, Google News, Facebook, Instagram, Twitter, Threads, TikTok, LinkedIn, and our newsletter

spot_img
Mark Milligan
Mark Milligan
Mark Milligan is a multi-award-winning journalist and the Managing Editor at HeritageDaily. His background is in archaeology and computer science, having written over 8,000 articles across several online publications. Mark is a member of the Association of British Science Writers (ABSW), the World Federation of Science Journalists, and in 2023 was the recipient of the British Citizen Award for Education, the BCA Medal of Honour, and the UK Prime Minister's Points of Light Award.
spot_img
spot_img

Mobile Application

spot_img

Related Articles

Jewel “worthy of a duke” unearthed at Castle Kolno

Researchers from the Institute of Archaeology at the University of Wroclaw have unearthed a jewel “worthy of a duke” at Castle Kolno, located between the Stobrawa and Budkowiczanka rivers in Stare Kolnie, Poland.

Preserved 3rd century mosaic excavated in Iznik

Excavations in the İznik district of northwestern Türkiye have uncovered a preserved mosaic floor dating from the 3rd century AD.

Time capsule of medieval artefacts unearthed in Łasztownia excavation

Archaeologists have unearthed a time capsule of medieval artefacts on the island of Łasztownia in Szczecin, Poland.

Mask reliefs unearthed during Castabala excavations

Archaeologists have unearthed a new series of mask reliefs during excavations in the ancient city of Castabala, Turkey.

Bronze Age proto-city discovered on the Kazakh Steppe

Archaeologists have discovered a late Bronze-Age proto-city on the Kazakh Steppe in north-eastern Kazakhstan.

Altamura Man resolves long-standing debate over Neanderthal evolution

A preserved Neanderthal fossil is providing new insights into how this ancient human species adapted to the cold climates of Ice Age Europe.

Evidence of lost Celtiberian city beneath Borobia 

The rediscovery of a funerary stele has provided new evidence of a lost Celtiberian City beneath the municipality of Borobia in the province of Soria, Spain.

Viking Age grave unearthed in Bjugn stuns archaeologists

A routine day of metal detecting led into one of Norway’s most captivating archaeological discoveries in years.