Date:

Why Tyrannosaurus was a slow runner

No other animal on land is larger than an elephant – but the fastest runner is the medium-sized cheetah.

A research team under the direction of the German Centre for Integrative Biodiversity Research (iDiv) and the Friedrich Schiller University Jena have now described why the largest animals are not the fastest. They have managed to so thanks to an amazingly simple mathematical model. The only information that the model must ‘be fed’ with is the weight of a particular animal as well as the medium it moves in, so either land, air or water.

- Advertisement -

On this basis alone, it calculates the maximum speed that an animal can reach with almost 90% accuracy. “The best feature of our model is that it is universally applicable,” says the lead author of the study, Myriam Hirt of the iDiv research centre and the University of Jena. “It can be performed for all body sizes of animals, from mites to blue whales, with all means of locomotion, from running and swimming to flying, and can be applied in all habitats.” Moreover, the model is by no means limited to animal species that currently exist, but can be applied equally well to extinct species.

The new model also provides results for extinct species which agree with the results produced by highly complex biomechanical simulations. CREDIT Myriam Hirt

“To test whether we can use our model to calculate the maximum speed of animals that are already extinct, we have applied it to dinosaur species, whose speed has up to now been simulated using highly complex biomechanical processes,” explains Hirt. The result is that the simple model delivered results for TriceratopsTyrannosaurusBrachiosaurus and others that matched those from complex simulations – and were not exactly record-breaking for Tyrannosaurus, who reached a speed of only 27 km/h (17 mi/h).

“This means that in future, our model will enable us to estimate, in a very simple way, how fast other extinct animals were able to run,” says the scientist.

Two assumptions are the basis of the model. The first assumption is related on the fact that animals reach their maximum speeds during comparatively short sprints, and not while running over long distances. Unlike running over longer distances, where the body constantly resupplies the muscles with energy (aerobic metabolism), sprinting uses energy that is stored in the muscles themselves but which is exhausted relatively quickly (anaerobic metabolism).

- Advertisement -

It seems logical enough: the larger the animal, the more muscle it has – and thus the faster it can sprint. However, Newton’s laws of motion also apply in the animal kingdom, we know mass has to overcome inertia, and so a five-tonne African elephant simply cannot start moving as quickly as a 2.5-gramme Etruscan shrew. By the time large animals such as the elephant get up to full speed while sprinting, their rapidly available energy reserves also soon run out.

Taken together, these two assumptions result in the previously mentioned curve: A beetle is slower than a mouse, which is slower than a rabbit, which is slower than a cheetah – which is faster than an elephant.

GERMAN CENTRE FOR INTEGRATIVE BIODIVERSITY RESEARCH (IDIV) HALLE-JENA-LEIPZIG

- Advertisement -

Stay Updated: Follow us on iOS, Android, Google News, Facebook, Instagram, Twitter, Threads, TikTok, LinkedIn, and our newsletter

spot_img
Mark Milligan
Mark Milligan
Mark Milligan is a multi-award-winning journalist and the Managing Editor at HeritageDaily. His background is in archaeology and computer science, having written over 8,000 articles across several online publications. Mark is a member of the Association of British Science Writers (ABSW), the World Federation of Science Journalists, and in 2023 was the recipient of the British Citizen Award for Education, the BCA Medal of Honour, and the UK Prime Minister's Points of Light Award.
spot_img
spot_img

Mobile Application

spot_img

Related Articles

Archaeologists uncover traces of Victorian school life

It’s rare for archaeologists to discover objects we can directly link to children, so a team from MOLA (Museum of London Archaeology) was delighted to uncover evidence of Victorian children’s schoolwork and play during recent excavations ahead of the development of SEGRO Park Wapping.

Rare 5th-century BC bone stylus discovered in Gela excavation

Archaeologists working in the Orto Fontanelle area of Gela have uncovered a remarkably rare and perfectly preserved bone ceramist’s stylus, a find being hailed as one of exceptional historical and archaeological value.

Nationally significant Anglo-Saxon burial ground uncovered at Sizewell C

Archaeologists have uncovered a nationally significant Anglo-Saxon burial ground during preparatory works for the Sizewell C nuclear power station in Suffolk.

Inscriptions reveal the lives behind the ancient temples of the Middle East

Stone temples rising from the deserts of the ancient Near East were meant to embody the power of the gods.

World’s oldest poison arrows discovered

Even in the deep Stone Age, humans possessed biochemical knowledge that appears extraordinary by modern standards.

Tang Dynasty noblewoman buried with gold hair ornaments

Archaeologists in northwest China have identified an elaborately furnished tomb belonging to a young Tang Dynasty noblewoman, providing significant evidence for the extent of China’s engagement with trans-Eurasian exchange networks during the late seventh century.

Near-complete bronze carnyx among Iron Age hoard discovery

A remarkable hoard of Iron Age metalwork dating back approximately 2,000 years has been uncovered in West Norfolk, shedding new light on the ceremonial and martial traditions of Britain’s Celtic communities.

Protective “Solomon’s Knot” mosaic uncovered in ancient Smyrna

Archaeologists have uncovered a rare mosaic room in the ancient city of Smyrna, featuring a central “Solomon’s Knot” motif believed to have served as a protective symbol against evil and misfortune during Late Antiquity.