What silver fir aDNA can tell us about Neolithic forests

Related Articles

Related Articles

A new technique makes it possible to cost-effectively analyse genetic material from fossil plant and animal remains.

Researchers from the Swiss Federal Institute for Forest, Snow and Landscape Research WSL and the universities of Lausanne and Bern have used this technique to examine the DNA of silver fir needles found in lake sediment in Ticino. They found clues as to how forests reacted to the emergence of agriculture.

The new process utilises the latest advances in DNA technology to isolate ancient DNA (aDNA) from prehistoric plants and animals. The techniques used to date are, however, expensive. “As population geneticists often need several dozens samples to make reliable statements, many research ideas are not currently financially viable,” says Nadir Alvarez, a professor at the University of Lausanne’s Department of Ecology and Evolution.

 

The research team led by Alvarez and his colleagues Christoph Sperisen (a population geneticist at the WSL), Willy Tinner (a professor of palaeoecology at the University of Bern) and Sarah Schmid (a biologist from the University of Lausanne) has now developed a cost-effective alternative and demonstrated its potential with subfossil silver fir needles found at Origlio lake in Ticino. The team showcased the results in the research journal Methods in Ecology and Evolution.

A needle in a haystack

Working with subfossil genetic material is a challenge. “aDNA is often fragmented, chemically damaged and contaminated with the genetic material of bacteria and fungi,” explains Sperisen. “In samples collected in lake sediment, for instance, only every hundredth DNA molecule comes from silver firs.” Extracting aDNA is therefore like looking for a needle in a haystack.

Until now researchers have extracted aDNA by introducing chemically manufactured counterparts of DNA sequences to the sample solution, as DNA consists of two strands with virtually mirror-image sequences of building blocks attached to one another. Tiny metal beads are attached to the manufactured DNA. Once the artificial DNA is bound to the aDNA, the whole structure can be extracted with a magnet.

However, up to over 90% of plant and animal DNA consists of sections with no known function, like a cookbook with mostly blank pages. The new technique, hyRAD-X, does not analyse the entire DNA strand but uses specifically the fraction of the genome that is expressed (i.e. those sections containing the instructions for building a protein). These sections are furthermore generated using an enzyme, an innovation that cuts the cost of an aDNA analysis by tenfold. As every speck of dust contains foreign DNA, this work must be conducted in a clean room, like the one at the WSL’s new national plant protection laboratory.

Stone Age forests at lake Origlio

The researchers used the new technique to investigate the genetic diversity of silver firs before and during the advent of agriculture at lake Origlio. Palaeobotanist Tinner studied the core of the lake sediment and discovered charcoal deposits as well as cereal pollen and invasive weeds, pointing to the first agricultural activities between 7,500 and 5,000 years ago, when people burned forests to clear space for farmland and pastures. This killed off all of Ticino’s heat-loving silver fir stands in the second half of the Holocene; chestnut trees now grow in their place.

The results show that the silver fir stand (and thus its genetic diversity) shrank with the dawn of agriculture and recovered around 6,200 years ago. “DNA comparisons of silver firs of varying ages show that the domestic stand genetically regenerated itself afresh without involving silver firs from other regions,” says Sperisen.

Genetic diversity is key to determining a population’s ability to cope with environmental changes. High genetic diversity increases the chances of adapting to a drier climate, for instance. Understanding how ecosystems previously genetically recovered from human intervention indicates how they could react to global climate change and current changes to the way land is used. As such, researchers now want to use the hyRAD-X technique on other subfossil plant samples to clarify, for example, whether the extinct, heat-loving silver fir stands in Ticino had specific genetic properties that could prove important in warmer climates.

In 2015, the WSL opened a clean room where researchers work under excess pressure, which prevents pollen, dust or any other impurities from entering the lab. Population geneticists use subfossil material from plants and animals to analyse DNA and thus gain insight into past ecosystems. The clean room is housed in the national plant protection laboratory, which was built by the WSL together with Switzerland’s Federal Office for the Environment FOEN and Federal Office for Agriculture FOAG.

* Subfossil = any prehistoric organism which has not fossilized, or only partially. Unlike fossils, subfossils can be dated using the C14 method.

Swiss Federal Institute for Forest, Snow and Landscape Research WSL

Download the HeritageDaily mobile application on iOS and Android

More on this topic

LATEST NEWS

Château Gaillard – Richard the Lionheart’s Castle

Construction of the castle began in 1196 by King Richard I, also known as Richard the Lionheart - who ruled as King of England and held the Dukedom of Normandy, as well as several other territories.

Geoscientists Discovers Causes of Sudden Volcanic Eruptions

Tiny crystals, ten thousand times thinner than a human hair, can cause explosive volcanic eruptions.

Specimens From Ice Age Provide Clues to Origin of Pack-Hunting in Modern Wolves

Wolves today live and hunt in packs, which helps them take down large prey. But when did this group behavior evolve?

Remnants Ancient Asteroid Shed New Light on the Early Solar System

Researchers have shaken up a once accepted timeline for cataclysmic events in the early solar system.

Chromium Steel Was First Made in Ancient Persia

Chromium steel - similar to what we know today as tool steel - was first made in Persia, nearly a millennium earlier than experts previously thought, according to a new study led by UCL researchers.

Artaxata – “The Armenian Carthage”

Artaxata, meaning "joy of Arta" was an ancient city and capital of the Kingdom of Armenia in the Ararat Province of Armenia.

New Funerary & Ritual Behaviors of the Neolithic Iberian Populations Discovered

Experts from the Department of Prehistory and Archaeology of the University of Seville have just published a study in the prestigious journal PLOS ONE on an important archaeological find in the Cueva de la Dehesilla (Cádiz).

The Great Wall of Gorgan

The Great Wall of Gorgan, also called the "The Red Snake" or “Alexander's Barrier” is the second-longest defensive wall (after the Great Wall of China), which ran for 121 miles from a narrowing between the Caspian Sea north of Gonbade Kavous (ancient Gorgan, or Jorjan in Arabic) and the Pishkamar mountains of north-eastern Iran.

Popular stories

The Secret Hellfire Club and the Hellfire Caves

The Hellfire Club was an exclusive membership-based organisation for high-society rakes, that was first founded in London in 1718, by Philip, Duke of Wharton, and several of society's elites.

Port Royal – The Sodom of the New World

Port Royal, originally named Cagway was an English harbour town and base of operations for buccaneers and privateers (pirates) until the great earthquake of 1692.

Matthew Hopkins – The Real Witch-Hunter

Matthew Hopkins was an infamous witch-hunter during the 17th century, who published “The Discovery of Witches” in 1647, and whose witch-hunting methods were applied during the notorious Salem Witch Trials in colonial Massachusetts.

Did Corn Fuel Cahokia’s Rise?

A new study suggests that corn was the staple subsistence crop that allowed the pre-Columbian city of Cahokia to rise to prominence and flourish for nearly 300 years.