Hawaiian biodiversity has been declining for millions of years

Related Articles

Related Articles

Hawaii’s unique animal and plant diversity has been declining on all but the Big Island for millions of years, long before humans arrived, according to a new analysis of species diversity on the islands by University of California, Berkeley, evolutionary biologists.

The team concluded that the shrinking land areas of the older islands began putting stress on the flora and fauna several million years after the islands formed. Today, all of the islands except the Big Island of Hawaii – the only island still growing – have experienced a decrease in species diversity, albeit imperceptibly on human time scales, since even before the extinction caused by human activity.

They reached this conclusion with a new method for analyzing the species diversity on the different islands in the multiple-island chain, deducing the history of diversification on each island with their new approach for 14 different groups, or clades, of birds, insects, spiders and plants.

“On the older islands, Kauai, Oahu and the four islands that were once parts of a bigger island called Maui Nui, it looks like most groups are now in long-term evolutionary decline,” said senior author Charles Marshall, a UC Berkeley professor of integrative biology and director of the University of California Museum of Paleontology. “The older islands were all much larger than they are now, and it looks like the the flora and fauna filled up the ecological space fast enough that once the islands began to contract the crowding generated drove species to extinction.”

Biologists have debated whether Hawaii’s birds, spiders, insects and plants – there are no native mammals – have radiated fully throughout the relatively young island chain, and some have claimed that evolutionary diversity has not yet peaked, based on comparisons of species’ DNA. The new study by Marshall and UC Berkeley graduate student Jun Ying Lim shows that the older islands had, in fact, peaked in diversity long ago.

“Biologists don’t often think about the evolutionary trajectory of their group because without a fossil record they have no data that bear on whether diversity is increasing or decreasing,” Marshall said. “This study adds weight to the argument that there might be a lot of groups living today that are actually in long-term evolutionary decline. So this paper also serves as a consciousness-raising exercise – how might we identify living groups that are in decline in the absence of a fossil record?”


Subscribe to more articles like this by following our Google Discovery feed - Click the follow button on your desktop or the star button on mobile. Subscribe

He is currently developing ways to extend the new approach developed to analyze Hawaii to other parts of the globe.

Marshall and Lim published their findings online March 15 in advance of publication in the journal Nature.

Hot spot

The volcanic Hawaiian islands we see today emerged from the waves over a period of about 6 million years, carried northwestward as the ocean crust moved over from the hot spot that brought the magma from inside Earth to the sea floor to build the islands. Kauai emerged slightly more than 6 million years ago, the newest, the Big Island of Hawaii, only about 1.3 million years ago.

Each newly formed island was colonized by plants and animals from the older islands, leading to a wealth of new species that filled each island’s ecological niches. For example, honeycreepers, an endemic group of bird species, and the unique silverswords filled all of Kauai’s carrying capacity – the number of species a particular ecosystem can support – within about 3 million years, while beetles took a little longer, about 4.5 million years. Some species, like the spider group Orsonwelles, have yet to completely fill Kauai’s available niches.

Marshall realized that “the progression of islands of the Hawaiian archipelago can be viewed as an evolutionary time machine,” revealing “rates of species-richness change for endemic species of the archipelago,” which has virtually no fossil record.

“It is increasingly appreciated that the biota of any particular place is a dynamic, ever-changing association of species,” Lim said. “The beauty of islands like Hawaii is that their geologic setting provides multiple temporal snapshots, and in so doing provides us a window to understanding the processes that have shaped its assembly though time.”

This insight came after previous work suggested that the only way to explain why, in the past, some mammal groups declined over millions of years was that the carrying capacity of the ecosystem had crashed, leading to severe overcrowding, more than expected by equilibrium theory.

The Hawaiian archipelago proved a good place to test that hypothesis, since the islands, once active volcanism ceases, steadily shrink. Maui Nui is less than one-third its original size 2-3 million years ago.

“With a quantitative measure of changing carrying capacity from the geologic record, Jun and I have been able to invert the process and infer the diversity trajectories for Hawaii, discovering on the way that none of the Hawaiian groups are at dynamic equilibrium,” Marshall wrote in a blog post on the “Behind the Paper” portion of the Nature Ecology and Evolution website. “Very satisfying!”

UNIVERSITY OF CALIFORNIA – BERKELEY

- Advertisement -

Download the HeritageDaily mobile application on iOS and Android

More on this topic

LATEST NEWS

Study Suggests the Mystery of The Lost Colony of Roanoke Solved

The Roanoke Colony refers to two colonisation attempts by Sir Walter Raleigh to establish a permanent English settlement in North America.

Drones Map High Plateaus Basin in Moroccan Atlas to Understand Human Evolution

Researchers from the Centro Nacional de Investigación sobre la Evolución Humana (CENIEH) have been using drones to create high-resolution aerial images and topographies to compile maps of the High Plateaus Basin in Moroccan Atlas.

The Kerguelen Oceanic Plateau Sheds Light on the Formation of Continents

How did the continents form? Although to a certain extent this remains an open question, the oceanic plateau of the Kerguelen Islands may well provide part of the answer, according to a French-Australian team led by the Géosciences Environnement Toulouse laboratory.

Ancient Societies Hold Lessons for Modern Cities

Today's modern cities, from Denver to Dubai, could learn a thing or two from the ancient Pueblo communities that once stretched across the southwestern United States. For starters, the more people live together, the better the living standards.

Volubilis – The Ancient Berber City

Volubilis is an archaeological site and ancient Berber city that many archaeologists believe was the capital of the Kingdom of Mauretania.

Pella – Birthplace of Alexander The Great

Pella is an archaeological site and the historical capital of the ancient kingdom of Macedon.

New Argentine fossils uncover history of celebrated conifer group

Newly unearthed, surprisingly well-preserved conifer fossils from Patagonia, Argentina, show that an endangered and celebrated group of tropical West Pacific trees has roots in the ancient supercontinent that once comprised Australia, Antarctica and South America, according to an international team of researchers.

High-tech CT reveals ancient evolutionary adaptation of extinct crocodylomorphs

The tree of life is rich in examples of species that changed from living in water to a land-based existence.

Fish fossils become buried treasure

Rare metals crucial to green industries turn out to have a surprising origin. Ancient global climate change and certain kinds of undersea geology drove fish populations to specific locations.

Archaeologists Discover Viking Toilet in Denmark

Archaeologists excavating a settlement on the Stevns Peninsula in Denmark suggests they have discovered a toilet from the Viking Age.

Popular stories