Date:

Rock layers preserve record of ancient sea tides near Blythe, California

Five million years ago, the Colorado River met the Gulf of California near the present-day desert town of Blythe, California. The evidence, say University of Oregon geologists, is in the sedimentary rocks exposed at the edges of the valley where the river flows today.

The layers vary rhythmically in thickness, reflecting the influx of sea current during strong spring and weak neap tides, and point to 330 meters (1,082 feet) of uplift of the seafloor in roughly the past 5 million years, said UO graduate student Brennan O’Connell, lead author on a paper online ahead of print in the journal Geology.

- Advertisement -

The findings provide compelling evidence that this region — the southern Bouse Formation that is rich in tidal features — once was under a northern-reaching, marine water arm of the Gulf of California. That view counters the notion that the southern Colorado River corridor was the southern-most lake of a long chain of large freshwater lakes that filled during first arrival of river waters.

“The recognition of tidal deposits in the Bouse Formation places an important new constraint on uplift of a broad region from the San Andreas fault to the western Colorado Plateau over the past 5 million years,” said co-author Rebecca J. Dorsey, a professor in the UO Department of Earth Sciences who has studied the river’s route for many years. “This study makes an important step toward resolving a 20-year-old debate about the depositional environments and tectonic significance of this area.”

The Colorado River today takes a meandering journey of some 160 miles from Blythe, passing under Interstate 10 and flowing mostly southward to where it empties into the present-day northern reach of the Gulf of California.

The lake perspective on these deposits is based on geochemical findings, including strontium, carbon and oxygen isotopes. Scientists supporting the lake theory have suggested that marine fossils found in the rocks resulted from birds carrying sea organisms into the region. The new findings, O’Connell said, complement evidence by paleontologists who have argued for a marine environment for more than 50 years based on the presence of marine fossils.

- Advertisement -

“We came at it from a new perspective,” O’Connell said. “We focused more on the features of the rocks, connecting them with both chemistry and paleontology. We wanted to understand the ancient environments these rocks were formed in by identifying distinct features. Sedimentary deposits look very different if they are produced in a lake versus a tidal setting.”

Thickness variations of the layers contain clues to depositional processes, she said. Stronger tides transport higher loads of sediment. O’Connell’s UO team used a mathematically driven Fourier analysis to graph the thickness of sedimentary layers in relation to tidal velocities. The results point to regular tidal cycles rather than random movements of sediment that would be produced by tributary river floods, storms, wind-generated lake currents or annual biochemically induced deposition.

“The stronger and higher the tides, the more sediment is transported, producing a thicker layer ” she said. “Spring tides produce thick layers of sediment, and neap tides produce thin layers. Differences in tidal current velocities are clearly seen in these layers of exposed sedimentary rocks. This didn’t happen in a lake. Lakes don’t have tides large enough to create such variations.”

UNIVERSITY OF OREGON

- Advertisement -
spot_img
Mark Milligan
Mark Milligan
Mark Milligan is multi-award-winning journalist and the Managing Editor at HeritageDaily. His background is in archaeology and computer science, having written over 7,500 articles across several online publications. Mark is a member of the Association of British Science Writers (ABSW), the World Federation of Science Journalists, and in 2023 was the recipient of the British Citizen Award for Education, the BCA Medal of Honour, and the UK Prime Minister's Points of Light Award.
spot_img

Mobile Application

spot_img

Related Articles

Underwater scans reveal lost submerged landscape

Researchers from the Life on the Edge project, a collaboration between the University of Bradford and the University of Split, has revealed a lost submerged landscape off the coast of Croatia using underwater scans.

Buried L-shaped structure and anomalies detected near Giza Pyramids

A geophysical study by archaeologists from the Higashi Nippon International University, Tohoku University, and the National Research Institute of Astronomy and Geophysics (NRIAG), have detected an L-shaped structure and several anomalies near the Giza Pyramids using geophysics.

Archaeologists search for traces of the “birthplace of Texas”

As part of a $51 million project, archaeologists have conducted a search for traces of Washington-on-the-Brazos, also known as the “birthplace of Texas”.

Archaeologists find moated medieval windmill

Archaeologists from MOLA (Museum of London Archaeology) have uncovered a moated medieval windmill during construction works of the National Highways A428 Black Cat to Caxton Gibbet improvement scheme in Bedfordshire, England.

Archaeologists find preserved Bronze Age wooden well

Archaeologists from Oxford Archaeology have uncovered a well-preserved Bronze Age wooden well in Oxfordshire, England.

Bronze Age treasures stolen from Ely Museum

Thieves have broken into Ely Museum and stolen historical treasures dating from the Bronze Age.

Dune restoration project uncovers intact WWII bunkers

A restoration project to remove invasive plants from dunes in the Heist Willemspark, Belgium, has led to the discovery of three intact WWII bunkers.

Recent findings shed light on the “Lost Colony” of Roanoke

Ongoing excavations by archaeologists from The First Colony Foundation have revealed new findings on the historical narrative of the "Lost Colony" of Roanoke.