Date:

How early mammals evolved night vision to avoid predators

Early mammals evolved in a burst during the Jurassic period, adapting a nocturnal lifestyle when dinosaurs were the dominant daytime predator.

How these early mammals evolved night vision to find food and survive has been a mystery, but a new study publishing June 20 in Developmental Cell suggests that rods in the mammalian eye, extremely sensitive to light, developed from color-detecting cone cells during this time to give mammals an edge in low-light conditions.

- Advertisement -

Cone cells are specialized for certain wavelengths of light to help animals detect color, while rods can detect even a single photon and are specialized for low-light vision. “The majority of mammals have rod-dominant retinas, but if you look at fish, frogs, or birds, the vast majority are cone-dominated–so the evolutionary question has always been, ‘What happened?'” says Anand Swaroop, a retina biologist at the National Eye Institute, part of the National Institutes of Health. “We’ve been working for a long time to understand the fundamental mechanisms behind rod and cone development.”

Previous work done by Swaroop and his colleagues showed that a transcription factor called NRL pushes cells in the retina toward maturing into rods by suppressing genes involved in cone development. “We began to wonder if, somehow, the short-wavelength cones were converted into rods during evolution,” says Swaroop.

To investigate the origin of rods in mammals, Swaroop and his team examined rod and cone cells taken from mice at different stages of development. Details of an organism’s embryonic development often reveal traits carried by its evolutionary ancestors; consider, for instance, how human embryos initially develop gill-like slits and a tail.

The researchers saw that in early stages, two days after the mice were born, developing rod cells expressed genes normally seen in mature short-wavelength cones (which are used in other animals to detect ultraviolet light). When the researchers examined the epigenetics of purified rod cells from mice, they saw that these aspects became repressed by histone and DNA methylations later in development, ten days after the mice were born.

- Advertisement -

In zebrafish, which are diurnal and cone-dominated, another set of experiments showed that the rod cells didn’t resemble cones at all. To investigate when the mammalian elements that turn cones to rods might have originated, the researchers reviewed genomic sequences from a variety of vertebrate animals. The team discovered that the genes responsible for the regulation of NRL became more refined in the placental mammals as the modern retina evolved and were lost in several non-mammalian groups. The origin of this regulatory system appeared to coincide with the evolution of nocturnality in early mammals.

The team concluded that in mammals, the transcription factor NRL became restricted to the photoreceptors in the eye, forcing the cells to change from cones to rods and giving early mammals the edge they needed to take up an active nighttime lifestyle. (Counter-intuitively, humans depend more on cones for our vision, but that’s because our ancestors later evolved to take advantage of the daylight hours again.)

“These rod photoreceptors retain the molecular footprint of short-wavelength cones,” says Swaroop. “We’ve provided evidence that by acquiring the regulatory elements for NRL to shift short-wavelength cones into rods, early mammals changed one type of cell from capturing UV light–which isn’t necessary at night–to something that is just extremely sensitive to light.”

CELL PRESS

- Advertisement -

Stay Updated: Follow us on iOS, Android, Google News, Facebook, Instagram, Twitter, Threads, TikTok, LinkedIn, and our newsletter

spot_img
Mark Milligan
Mark Milligan
Mark Milligan is a multi-award-winning journalist and the Managing Editor at HeritageDaily. His background is in archaeology and computer science, having written over 8,000 articles across several online publications. Mark is a member of the Association of British Science Writers (ABSW), the World Federation of Science Journalists, and in 2023 was the recipient of the British Citizen Award for Education, the BCA Medal of Honour, and the UK Prime Minister's Points of Light Award.
spot_img
spot_img

Mobile Application

spot_img

Related Articles

Excavations reveal a vast Roman villa complex

Archaeologists from Inrap have revealed a vast Roman villa complex during excavations in Auxerre, France.

Unprecedented Roman discovery in Ireland

Archaeologists have made an unprecedented Roman discovery during excavations at Drumanagh in north Dublin.

Exquisite marble sarcophagus unearthed near Caesarea

Archaeologists from the Israel Antiquities Authority (IAA), working on behalf of the Caesarea Development Corporation, have unearthed an exquisitely sculptured marble sarcophagus near the coastal city of Caesarea, Israel.

Viking-Era boat burial uncovered on Senja

Archaeologists have uncovered a Viking-Era boat burial on the island of Senja in northern Norway.

Mystery of the Maka Lahi Rock finally solved

In 2024, researchers from Australia's University of Queensland discovered a giant 1,200-tonne rock more than 200 metres inland on the island of Tongatapu.

Secrets to crafting the Nebra Sky Disc revealed

Using a blend of forensic material analysis with experimental archaeology, researchers have successfully reconstructed the techniques and processes behind crafting the Nebra Sky Disc.

Royal tomb unearthed in Gordion could belong to King Midas’ family

Archaeologists from the Gordion Project have uncovered a Phrygian royal tomb, potentially belonging to a member of King Midas' Family from the 8th century BC.

Bronze Age tombs reveal wealth from ancient trade

The discovery of three Bronze Age tombs at Dromolaxia-Vyzakia has shed light on ancient trade routes connecting Cyprus with the Aegean, Anatolia, Egypt, and the Near East.