New study exposes negative effects of climate change on Antarctic fish

Related Articles

Related Articles

Scientists at University of California Davis and San Francisco State University have discovered that the combination of elevated levels of carbon dioxide and an increase in ocean water temperature has a significant impact on survival and development of the Antarctic dragonfish (Gymnodraco acuticeps).

The research article was published today in the journal Conservation Physiology.

The study, which was the first to investigate the response to warming and increased pCO2 (partial pressure of carbon dioxide) in a developing Antarctic fish, assessed the effects of near-future ocean warming and acidification on early embryos of the naked dragonfish, a shallow benthic spawner exclusive to the circumpolar Antarctic. As the formation of their embryos takes longer than many species (up to ten months), this makes them particularly vulnerable to a change in chemical and physical conditions.

 

The survival and metabolism of the dragonfish embryo was measured over time in two different temperatures and three pCO2 levels over a three-week period, which allowed the researchers to assess potential vulnerability of developing dragonfish to future ocean scenarios. The results showed that a near-future increase in ocean temperature as well as acidification have the potential to significantly alter the physiology and development of Antarctic fish. One of the article’s authors, Assistant Professor Anne Todgham, explained that “temperature will probably be the main driver of change, but increases in pCO2 will also alter embryonic physiology, with responses dependent on water temperature.”

Professor Todgham went on to say: “Dragonfish embryos exhibited a synergistic increase in mortality when elevated temperature was coupled with increased pCO2 over the course of the three week experiment. While we predictably found that temperature increased embryonic development, altered development due to increased pCO2 was unexpected.” These unique findings show that single stressors alone may not be sufficient to predict the effects on early development of fish, as the negative effects of increased pCO2 may only manifest at increased temperatures. They also show that fish may differ from other marine invertebrate embryos in how they respond to pCO2.

The faster development of the embryos in warmer and more acidic waters could be bad news for the dragonfish. Hatching earlier, at the start of the dark winter months when limited food resources are available, has the potential to limit growth during critical periods of development. Furthermore, impacts to survival would reduce numbers of embryos that hatch and could impact dragonfish abundance.

OXFORD UNIVERSITY PRESS

Download the HeritageDaily mobile application on iOS and Android

More on this topic

LATEST NEWS

Inside the Ice Giants of Space

A new theoretical method paves the way to modelling the interior of the ice giants Uranus and Neptune, thanks to computer simulations on the water contained within them.

Innovative Method Opens up New Perspectives for Reconstructing Climatic Conditions of Past Eras

Corals precipitate their calcareous skeletons (calcium carbonate) from seawater. Over thousands of years, vast coral reefs form due to the deposition of this calcium carbonate.

New Study Supports Predictions That the Arctic Could be Free of Sea Ice by 2035

A new study, published this week in the journal Nature Climate Change, supports predictions that the Arctic could be free of sea ice by 2035.

Rare ‘Boomerang’ Earthquake Observed Along Atlantic Ocean Fault Line

Scientists have tracked a 'boomerang' earthquake in the ocean for the first time, providing clues about how they could cause devastation on land.

The Evolution of Colourful Feathers Shines Light on the Missing Link in Evolution by Natural Selection

There's a paradox within the theory of evolution: The life forms that exist today are here because they were able to change when past environments disappeared. Yet, organisms evolve to fit into specific environmental niches.

Study Confirms the Power of Deinosuchus & its ‘Teeth the Size of Bananas’

A new study, revisiting fossil specimens from the enormous crocodylian, Deinosuchus, has confirmed that the beast had teeth "the size of bananas", capable to take down even the very largest of dinosaurs.

The Lost Town of Trellech

Trellech is a small rural village in south-east Wales, but during the 13th century, it was one of the largest medieval towns in all of Wales.

The Varangian Guard – When Vikings Served the Eastern Roman Empire

The Varangian Guard was an elite unit that served as the personal bodyguards for the emperors of the Byzantine Empire (Eastern Roman Empire).

Popular stories

Port Royal – The Sodom of the New World

Port Royal, originally named Cagway was an English harbour town and base of operations for buccaneers and privateers (pirates) until the great earthquake of 1692.

Matthew Hopkins – The Real Witch-Hunter

Matthew Hopkins was an infamous witch-hunter during the 17th century, who published “The Discovery of Witches” in 1647, and whose witch-hunting methods were applied during the notorious Salem Witch Trials in colonial Massachusetts.

Did Corn Fuel Cahokia’s Rise?

A new study suggests that corn was the staple subsistence crop that allowed the pre-Columbian city of Cahokia to rise to prominence and flourish for nearly 300 years.

The Real Dracula?

“Dracula”, published in 1897 by the Irish Author Bram Stoker, introduced audiences to the infamous Count and his dark world of sired vampiric minions.