Treasure trove of ancient genomes helps recalibrate the human evolutionary clock

Just as if you were adjusting a watch, the key to accurately telling evolutionary time is based on periodically calibrating against a gold standard.

For a long time scientists have used DNA data to develop molecular clocks that measure the rate at which DNA changes, i.e. accumulates mutations, as a premier tool to delve into the past evolutionary timelines for the lineage of a given species. For example, in human evolution molecular clocks, when combined with fossil evidence, have aided in tracing the time of the last common ancestor of chimpanzees and humans to 5-7 million years ago, and contributed to the recent ‘out of Africa’ theory for a great human migration event 100,000 years ago.

In order to improve the modelling and reading of the branches on the human tree of life, authors Francois Balloux et al, compiled the most comprehensive DNA set to date, a new treasure trove of 146 ancient (including Neanderthal and Denisovian) and modern human full mitochondrial genomes (amongst a set of 320 available worldwide). Mitochondrial DNA (mtDNA) is a valuable resource for evolutionary scientists, because they have a high mutation rate, and unlike genomic DNA, are only inherited maternally.


Now, by using a variety of sophisticated calibration techniques, the authors have improved the accuracy of using mtDNA as a molecular clock by recalibrating the human evolutionary tree. They demonstrated that a molecular clock calibrated with ancient sequences was much more accurate that the traditional ones based on archaeological evidence. With this new recalibration, scientists are now able to trace back, with greater accuracy than ever before, the first ‘Eves’ of the many migrations leading to the colonisation of the earth by anatomically modern humans.

“The recent possibility to generate high-quality genome sequences from ancient remains represents an amazing progress in our ability to accurately reconstruct the past history of many species, including our own,” said author Adrien Rieux.

The research has been published this week in Molecular Biology and Evolution.





Contributing Source: Molecular Biology and Evolution (Oxford University Press)

Header Image Source: Wikimedia

Download the HeritageDaily mobile application on iOS and Android

More on this topic

Markus Milligan
Markus Milligan
Markus Milligan - Markus is a journalist and the Managing Editor at HeritageDaily. His background is in archaeology and computer science, having written over 7,000 articles across several online publications. Markus is a member of the Association of British Science Writers (ABSW).




Popular stories