Date:

Western Wall Wearing Away? Discovery of Extreme Erosion Process Could Guide New Preservation Techniques

Researchers from the Hebrew University of Jerusalem investigated erosion in the different types of limestone in the Western Wall located at the foot of Jerusalem’s Temple Mount. Stones comprised of large crystals were almost unchanged in 2000 years, while limestone containing small crystals eroded much faster and in some cases had receded by tens of centimeters, potentially weakening the wall’s structure. The researchers describe an accelerated erosion process that explains why some rocks are more weathered than others, and displayed that chemo-mechanical erosion extends down to the tiny micron scale. The findings could have significant implications for regional and global carbonate weathering, and could help guide the development of effective preservation techniques that slow the rate of erosion in order to protect cultural heritage sites around the world.

Visitors to the Western Wall in Jerusalem can see that some of its stones have suffered extreme erosion. This is good news for people placing prayer notes in the wall’s many cracks and crevices, but presents a major problem for engineers concerned about the structure’s stability.

- Advertisement -

The Western Wall is a remnant of the ancient wall that surrounded the courtyard of the Jewish Temple in Jerusalem. It resides in Jerusalem’s Old City at the foot of the Temple Mount.

Part of the Western Wall showing highly eroded blocks alongside well preserved stones. (Photo: Dr. Simon Emmanuel, Hebrew University)
Part of the Western Wall showing highly eroded blocks alongside well preserved stones. (Photo: Dr. Simon Emmanuel, Hebrew University)

In order to calculate the erosion in the different kinds of limestone that make up the Western Wall, researchers from the Hebrew University of Jerusalem used a laser scanner to create an accurate three-dimensional computer model. The researchers are Dr. Simon Emmanuel, the Harry P. Kaufmann Senior Lecturer in Environmental Water Technology, and PhD student Mrs. Yael Levenson, at the Hebrew University’s Institute of Earth Sciences.

As reported in an article accepted for publication in the journal Geology, they discovered that stones comprised of large crystals were resistant to wear, so they remained in a good condition over the 2000 years since they were put into place. However, limestone with very small crystals (about a thousandth of a millimeter in size) eroded at a much faster rate.

Microscope image of Jerusalem limestone made up of tiny crystals. (Photo: Dr. Simon Emmanuel, Hebrew University)
Microscope image of Jerusalem limestone made up of tiny crystals. (Photo: Dr. Simon Emmanuel, Hebrew University)

In some cases, extreme erosion rates in fine-grained micritic limestone blocks were up to 100 times faster than the average rates estimated for the coarse-grained limestone blocks. In some places these stones had receded by tens of centimeters, potentially weakening the entire structure.

- Advertisement -

In order to obtain a better understanding of what causes the two types of rock to behave differently, the researchers collected samples from ancient quarries thought to have supplied the stones for the Second Temple. Using a powerful atomic force microscope, they were able to see how the rocks disintegrated when they came into contact with water. During the experiments on rocks comprised of small crystals, tiny particles rapidly detached from the surface of the rock. These experiments stimulated the way in which rainwater interacts with limestone in nature.

Observed for the first time in Dr. Emmanuel’s lab, this process of accelerated erosion has the potential to explain why some rocks are more weathered than others. While mechanical weathering is thought to act on blocks and chips of rock at the visible outcrop sale, the researchers displayed for the first time that chemo-mechanical erosion extends down to the tiny micron sale. The findings could have significant implications for regional and global carbonate weathering.

According to Dr. Emmanuel, “Understanding such weathering processes could help guide the development of effective preservation techniques. For example, it may be possible to develop materials that slow the rate of erosion by binding the tiny crystals in the rock together. Advanced engineering techniques like this should assist efforts to protect not only the Western Wall, but other cultural heritage sites in Israel and around the world.”

The research appears as “Carbonate weathering rates accelerated by micron-scale grain detachment,” in the journal Geology. The research was supported by the Israel Science Foundation.

 

 

Contributing Source: Hebrew University of Jerusalem

Header Image Source: Wikimedia

- Advertisement -

Stay Updated: Follow us on iOS, Android, Google News, Facebook, Instagram, Twitter, Threads, TikTok, LinkedIn, and our newsletter

spot_img
Mark Milligan
Mark Milligan
Mark Milligan is a multi-award-winning journalist and the Managing Editor at HeritageDaily. His background is in archaeology and computer science, having written over 8,000 articles across several online publications. Mark is a member of the Association of British Science Writers (ABSW), the World Federation of Science Journalists, and in 2023 was the recipient of the British Citizen Award for Education, the BCA Medal of Honour, and the UK Prime Minister's Points of Light Award.
spot_img
spot_img

Mobile Application

spot_img

Related Articles

Traces of Tlatelolca remains unearthed in Mexico City

Archaeologists from the National Institute of Anthropology and History (INAH) have unearthed a domestic structure containing three human burials, a stone tlecuil, and a significant collection of Aztec III–style ceramics.

LiDAR survey leads to unexpected castle discovery

A previously unknown medieval castle has been discovered in the canton of Thurgau, Switzerland, following a study of high-resolution LiDAR maps.

Byzantine-Era mosaic discovered in Midyat

Renovation work on a historic mill has uncovered a 1,500-year-old mosaic from the Byzantine era.

Sacrificial complex uncovered in Orenburg

Archaeologists from the Ural Archaeological Expedition have uncovered a sacrificial complex during excavations at the Vysokaya Mogila–Studenikin Mar necropolis, located in Russia’s Orenburg Region.

Elite warrior burials found near Akasztó

Archaeologists have unearthed burials from the Hungarian Conquest on the outskirts of Akasztó, located in the Bács-Kiskun county, Hungary.

10,000-year-old human face reliefs found at Sefertepe

Achaeologists in southeastern Türkiye have uncovered two human face reliefs believed to be more than 10,000 years old, offering rare new insights into artistic expression during the Neolithic period.

Archaic-Era tomb contains elaborate bronze diadem

Excavations by the Ephorate of Antiquities of Phthiotis and Evrytania have made the remarkable discovery of an Archaic-Era tomb containing the remains of a woman buried with an elaborate bronze diadem.

Archaeologists open 5,000-year-old Begazi–Dandibay tomb

Archaeologists in Kazakhstan have announced the discovery of an exceptionally well-preserved tomb attributed to the Begazi–Dandibay, a late Bronze Age culture known for constructing megalithic mausolea.