Date:

Tropical collapse caused by lethal heat

Conodonts : Wiki Commons

- Advertisement -

Scientists have discovered why the ‘broken world’ following the worst extinction of all time lasted so long – it was simply too hot to survive.

The end-Permian mass extinction, which occurred around 250 million years ago in the pre-dinosaur era, wiped out nearly all the world’s species. Typically, a mass extinction is followed by a ‘dead zone’ during which new species are not seen for tens of thousands of years. In this case, the dead zone, during the Early Triassic period which followed, lasted for a perplexingly long period: five million years.

A study jointly led by the University of Leeds and China University of Geosciences (Wuhan), in collaboration with the University of Erlangen-Nurnburg (Germany), shows the cause of this lengthy devastation was a temperature rise to lethal levels in the tropics: around 50-60°C on land, and 40°C at the sea-surface.

Lead author Yadong Sun, who is based in Leeds while completing a joint PhD in geology, says: “Global warming has long been linked to the end-Permian mass extinction, but this study is the first to show extreme temperatures kept life from re-starting in Equatorial latitudes for millions of years.”

It is also the first study to show water temperatures close to the ocean’s surface can reach 40°C – a near-lethal value at which marine life dies and photosynthesis stops. Until now, climate modellers have assumed sea-surface temperatures cannot surpass 30°C. The findings may help us understand future climate change patterns.

The dead zone would have been a strange world – very wet in the tropics but with almost nothing growing. No forests grew, only shrubs and ferns. No fish or marine reptiles were to be found in the tropics, only shellfish, and virtually no land animals existed because their high metabolic rate made it impossible to deal with the extreme temperatures. Only the polar regions provided a refuge from the baking heat.

- Advertisement -
A paleogeographic reconstruction of the Early Triassic world (Smithian substage) around 252-247 million years ago, showing a ‘dead zone’ in the tropics. Marine reptiles (ichthyosaurs), terrestrial tetrapods and fish almost exclusively occurred in higher latitudes (>30 °N and >40 °S) with rare exceptions.
Please credit: Yadong Sun, University of Leeds

Before the end-Permian mass extinction the Earth had teemed with plants and animals including primitive reptiles and amphibians, and a wide variety of sea creatures including coral and sea lillies.

This broken world scenario was caused by a breakdown in global carbon cycling. In normal circumstances, plants help regulate temperature by absorbing Co2 and burying it as dead plant matter. Without plants, levels of Co2 can rise unchecked, which causes temperatures to increase.

The study, published today [19 October 2012] in the journal Science, is the most detailed temperature record of this study period (252-247 million years ago) to date.

Sun and his colleagues collected data from 15,000 ancient conodonts (tiny teeth of extinct eel-like fishes) extracted from two tonnes of rocks from South China. Conodonts form a skeleton using oxygen. The isotopes of oxygen in skeletons are temperature controlled, so by studying the ratio of oxygen isotopes in the conodonts he was able to detect temperature levels hundreds of millions of years ago.

Professor Paul Wignall from the School of Earth and Environment at the University of Leeds, one of the study’s co-authors, said: “Nobody has ever dared say that past climates attained these levels of heat. Hopefully future global warming won’t get anywhere near temperatures of 250 million years ago, but if it does we have shown that it may take millions of years to recover.”

The study is the latest collaboration in a 20-year research partnership between the University of Leeds and China University of Geosciences in Wuhan. It was funded by the Chinese Science Foundation.

For more information:

‘Lethally hot temperatures during the early Triassic greenhouse’ by Yadong Sun (University of Leeds and China University of Geosciences), Michael Joachimski (University Erlangen-Nurnberg, Germany), Paul B. Wignall (University of Leeds), Chunbo Yan (China University of Geosciences), Yanlong Chen (University of Graz, Austria), Haishui Jiang (China University of Geosciences, Lina Wang (China University of Geosciences) and Xulong Lai (China University of Geosciences) is published in Science on 19 October 2012. For a copy please view the web page http://www.eurekalert.org/jrnls/sci/ or contact the Science press team, phone +1 202-326-6440 or email [email protected]

Contributing Source : University of Leeds

HeritageDaily : Palaeontology News : Paleontology Press Releases

 

- Advertisement -

Stay Updated: Follow us on iOS, Android, Google News, Facebook, Instagram, Twitter, Threads, TikTok, LinkedIn, and our newsletter

spot_img
Mark Milligan
Mark Milligan
Mark Milligan is a multi-award-winning journalist and the Managing Editor at HeritageDaily. His background is in archaeology and computer science, having written over 8,000 articles across several online publications. Mark is a member of the Association of British Science Writers (ABSW), the World Federation of Science Journalists, and in 2023 was the recipient of the British Citizen Award for Education, the BCA Medal of Honour, and the UK Prime Minister's Points of Light Award.
spot_img
spot_img

Mobile Application

spot_img

Related Articles

Aerial photographs indicate an enormous Avar-Era cemetery

An analysis of aerial photographs has led to the discovery of a previously unknown Avar-era cemetery on the outskirts of Tatabánya, Hungary.

Excavations reveal a vast Roman villa complex

Archaeologists from Inrap have revealed a vast Roman villa complex during excavations in Auxerre, France.

Unprecedented Roman discovery in Ireland

Archaeologists have made an unprecedented Roman discovery during excavations at Drumanagh in north Dublin.

Exquisite marble sarcophagus unearthed near Caesarea

Archaeologists from the Israel Antiquities Authority (IAA), working on behalf of the Caesarea Development Corporation, have unearthed an exquisitely sculptured marble sarcophagus near the coastal city of Caesarea, Israel.

Viking-Era boat burial uncovered on Senja

Archaeologists have uncovered a Viking-Era boat burial on the island of Senja in northern Norway.

Mystery of the Maka Lahi Rock finally solved

In 2024, researchers from Australia's University of Queensland discovered a giant 1,200-tonne rock more than 200 metres inland on the island of Tongatapu.

Secrets to crafting the Nebra Sky Disc revealed

Using a blend of forensic material analysis with experimental archaeology, researchers have successfully reconstructed the techniques and processes behind crafting the Nebra Sky Disc.

Royal tomb unearthed in Gordion could belong to King Midas’ family

Archaeologists from the Gordion Project have uncovered a Phrygian royal tomb, potentially belonging to a member of King Midas' Family from the 8th century BC.