Date:

Reign of the Giant Insects Ended With the Evolution of Birds

Upper Jurassic Insect Wiki Commons

- Advertisement -

Giant insects ruled the prehistoric skies during periods when Earth’s atmosphere was rich in oxygen. Then came the birds. After the evolution of birds about 150 million years ago, insects got smaller despite rising oxygen levels, according to a new study by scientists at the University of California, Santa Cruz.

This fossil insect wing (Stephanotypus schneideri) from the period about 300 million years ago when insects reached their greatest sizes, measures 19.5 centimeters (almost eight inches) long. The largest species of that time were even bigger, with wings 30 centimeters long. For comparison, the inset shows the wing of the largest dragonfly of the past 65 million years. Photo by Wolfgang Zessin.

Insects reached their biggest sizes about 300 million years ago during the late Carboniferous and early Permian periods. This was the reign of the predatory griffinflies, giant dragonfly-like insects with wingspans of up to 28 inches (70 centimeters). The leading theory attributes their large size to high oxygen concentrations in the atmosphere (over 30 percent, compared to 21 percent today), which allowed giant insects to get enough oxygen through the tiny breathing tubes that insects use instead of lungs.

The new study takes a close look at the relationship between insect size and prehistoric oxygen levels. Matthew Clapham, an assistant professor of Earth and planetary sciences at UC Santa Cruz, and Jered Karr, a UCSC graduate student who began working on the project as an undergraduate, compiled a huge dataset of wing lengths from published records of fossil insects, then analyzed insect size in relation to oxygen levels over hundreds of millions of years of insect evolution. Their findings are published in the June 4 online early edition of the Proceedings of the National Academy of Sciences (PNAS).

“Maximum insect size does track oxygen surprisingly well as it goes up and down for about 200 million years,” Clapham said. “Then right around the end of the Jurassic and beginning of the Cretaceous period, about 150 million years ago, all of a sudden oxygen goes up but insect size goes down. And this coincides really strikingly with the evolution of birds.”

With predatory birds on the wing, the need for maneuverability became a driving force in the evolution of flying insects, favoring smaller body size.

The findings are based on a fairly straightforward analysis, Clapham said, but getting the data was a laborious task. Karr compiled the dataset of more than 10,500 fossil insect wing lengths from an extensive review of publications on fossil insects. For atmospheric oxygen concentrations over time, the researchers relied on the widely used “Geocarbsulf” model developed by Yale geologist Robert Berner. They also repeated the analysis using a different model and got similar results.

- Advertisement -

The study provided weak support for an effect on insect size from pterosaurs, the flying reptiles that evolved in the late Triassic about 230 million years ago. There were larger insects in the Triassic than in the Jurassic, after pterosaurs appeared. But a 20-million-year gap in the insect fossil record makes it hard to tell when insect size changed, and a drop in oxygen levels around the same time further complicates the analysis.

Another transition in insect size occurred more recently at the end of the Cretaceous period, between 90 and 65 million years ago. Again, a shortage of fossils makes it hard to track the decrease in insect sizes during this period, and several factors could be responsible. These include the continued specialization of birds, the evolution of bats, and a mass extinction at the end of the Cretaceous.

“I suspect it’s from the continuing specialization of birds,” Clapham said. “The early birds were not very good at flying. But by the end of the Cretaceous, birds did look quite a lot like modern birds.”

Clapham emphasized that the study focused on changes in the maximum size of insects over time. Average insect size would be much more difficult to determine due to biases in the fossil record, since larger insects are more likely to be preserved and discovered.

“There have always been small insects,” he said. “Even in the Permian when you had these giant insects, there were lots with wings a couple of millimeters long. It’s always a combination of ecological and environmental factors that determines body size, and there are plenty of ecological reasons why insects are small.”

Contributing Source : University of California – Santa Cruz

The original article was written by Tim Stephens

HeritageDaily : Palaeontology News : Palaeontology Press Releases

- Advertisement -

Stay Updated: Follow us on iOS, Android, Google News, Facebook, Instagram, Twitter, Threads, TikTok, LinkedIn, and our newsletter

spot_img
Mark Milligan
Mark Milligan
Mark Milligan is a multi-award-winning journalist and the Managing Editor at HeritageDaily. His background is in archaeology and computer science, having written over 8,000 articles across several online publications. Mark is a member of the Association of British Science Writers (ABSW), the World Federation of Science Journalists, and in 2023 was the recipient of the British Citizen Award for Education, the BCA Medal of Honour, and the UK Prime Minister's Points of Light Award.
spot_img
spot_img

Mobile Application

spot_img

Related Articles

Ancient bipyramidal ingots found submerged in Sava River

A large cache of bipyramidal ingots has been discovered in the Sava River in the Posavina Canton, Bosnia and Herzegovina.

Rare Migration Period brooch unearthed in Lapland

A rare Migration Period brooch has been discovered in Kemi, Lapland.

Unparalleled Bronze Age discovery

Detectorists from the Kociewskie Poszukiwacze Association have discovered a perfectly preserved Bronze Age bracelet, described by experts as unparalleled.

British Bronze Age sickle unearthed in Lower Seine Valley

Archaeologists from the National Institute for Preventive Archaeological Research (INRAP) have announced the discovery of a Bronze Age sickle in France’s Lower Seine Valley.

Thracian warrior tomb discovered in Bulgaria

A Thracian warrior tomb has been discovered in Bulgaria’s Topolovgrad region, which archaeologists have described as the country’s richest example from the Hellenistic-era.

Archaeology community mourns the passing of John Ward

John Ward was a British archaeologist from Hereford, who co‑founded the Gebel el‑Silsila Survey Project in 2012 alongside his wife, Dr. Maria Nilsson of Lund University.

Ceremonial club heads among new discoveries in lost Chachapoyas city

Archaeologists have discovered two ceremonial club heads and approximately 200 pre-Hispanic structures belonging to the ancient Chachapoyas culture during a study in the La Jalca district, located in Chachapoyas province, Amazonas.

Neanderthal “workshop” unearthed in Mazovia

A team of archaeologists from the State Archaeological Museum in Warsaw, the University of Warsaw, and the University of Wrocław, have unearthed an ancient Neanderthal workshop in Mazovia, Poland.