Date:

Inner ear may hold key to ancient primate behavior

Proconsul is an extinct genus of primates that existed from 23 to 5 million years ago :  Wiki Commons

- Advertisement -

CT scans of fossilized primate skulls or skull fragments from both the Old and New Worlds may shed light on how these extinct animals moved, especially for those species without any known remains, according to an international team of researchers.

The researchers looked at the bony labyrinth in fossil remains and compared them to CT scans previously obtained from living primate species. The bony labyrinth of the inner ear is made up of the cochlea — the major organ of hearing — the vestibule and the three semicircular canals which sense head motion and provide input to synchronize movement with visual stimuli.

“Almost in every case where there is a fossilized skull, the semicircular canals are present and well preserved,” said Timothy Ryan, assistant professor of anthropology, geosciences and information sciences and technology, Penn State. “They are embedded in a very dense part of the skull and so are protected.”

This is a three-dimensional reconstruction of the cranium and semicircular canals from the fossil anthropoid primate Aegyptopithecus zeuxis. The specimen is courtesy of the Egyptian Geological Museum and Division of Fossil Primates, Duke Lemur Center. Credit: Tim Ryan, Penn State

Normally, researchers assess the locomotor behaviors of extinct animals, including primates, by examining limb bones. However, frequently the only fossilized remains found are from the head. By comparing the semicircular canals of extinct species to those of existing species, the researchers could determine if the extinct animals moved with agility — leaping like monkeys or lemurs or swinging from limb to limb like gibbons — or travelled more slowly like baboons or gorillas.

They could make this determination because the size of the three semicircular canals is closely related to their sensitivity.

Previous research showed that there is a direct relationship between the size of the semicircular canals and the degree of agility an animal exhibits. There is also a direct connection between the size of these canals and the size of the animal.

- Advertisement -

Correcting for animal size, the researchers compared scans from 16 fossil species spanning New World monkeys, Old World monkeys and apes, to living primates whose locomotor behaviors are known. Included in the study are some of the oldest fossil anthropoids — the group that includes monkeys, apes and humans — from the Fayum Depression in Egypt.

“The fossil anthropoids analyzed here clearly fall into the range of variation of modern primates, making agility reconstructions based on extant taxa relatively robust,” the researchers reported in today’s (June 13) issue of Proceedings of the Royal Society B: Biological Sciences.

The researchers believe that the relatively high degree of correspondence with known behaviors suggests that this method produces accurate reconstructions of locomotor agility.

The researchers found that the earliest anthropoids moved in the medium to medium slow range, slower than predicted. They found that other early anthropoids that predated the split between monkeys and apes also fell in the medium slow category, including the well-known species Aegyptophithecus from about 29 million years ago and other animals from Egypt and Saudi Arabia.

But once the split between Old World monkeys and apes occurs, both monkeys and apes fall in the medium to medium fast range like macaques. This includes Proconsul heseloni found in Kenya and considered one of the first apes.

The scans from New World monkeys, dating from 12 to 20 million years ago, showed the animals were relatively agile similar to cebus monkeys or tamarins.

“Most of the fossil New World monkeys we examined are known only from cranial material with no associated post-cranial fossils,” said Ryan, who is also co-director of the Center for Quantitative Imaging. “We had no idea about their locomotion.”

The researchers now have predictions of what these New World monkeys were doing and they know that they were faster than their Old World ancestors.

“The research suggests that the last common ancestor of Old World monkeys and apes would have been an animal of medium agility, much like living macaques,” said Ryan. “But what is really surprising is that the early ape, Proconsul, appears more agile than expected. “

This result suggests that the living large-bodied apes, such as gorillas and orangutans, may have evolved their slower locomotor patterns from these more agile ape ancestors.

Background:

Other researchers on this project were Mary T. Silcox, assistant professor of anthropology, University of Toronto; Alan Walker, Evan Pugh Professor Emeritus of Anthropology and Biology, Penn State; Xianyun Mao, recent graduate student in statistics, Penn State; David R Begun, professor of anthropology, University of Toronto; Brenda R. Benefit, professor of biological anthropology and Monte L. McCrossin, associate professor and director, museum, New Mexico State University; Philip D. Gingerich, curator, William J. Sanders, and Iyad S. Zalmout, graduate student, Museum of Paleontology, University of Michigan; Meike Kohler and Salvador Moya-Sola,, Catalan Institute of Paleontology, Autonomous University of Barcelona; Erik R. Seiffert, associate professor of anatomical sciences, Stony Brook University; Elwyn Simons, James B. Duke Professor Emeritus and scientific director, Duke University Primate Center and Fred Spoor, Max Planck Institute for Evolutionary Anthropology.

The National Science Foundation and the National Science and Engineering Council of Canada supported this work.

 

Contributing Source : Penn State

HeritageDaily : Archaeology News : Archaeology Press Releases

- Advertisement -
spot_img
Mark Milligan
Mark Milligan
Mark Milligan is multi-award-winning journalist and the Managing Editor at HeritageDaily. His background is in archaeology and computer science, having written over 7,500 articles across several online publications. Mark is a member of the Association of British Science Writers (ABSW), the World Federation of Science Journalists, and in 2023 was the recipient of the British Citizen Award for Education, the BCA Medal of Honour, and the UK Prime Minister's Points of Light Award.
spot_img

Mobile Application

spot_img

Related Articles

Archaeologists search crash site of WWII B-17 for lost pilot

Archaeologists from Cotswold Archaeology are excavating the crash site of a WWII B-17 Flying Fortress in an English woodland.

Roman Era tomb found guarded by carved bull heads

Archaeologists excavating at the ancient Tharsa necropolis have uncovered a Roman Era tomb guarded by two carved bull heads.

Revolutionary war barracks discovered at Colonial Williamsburg

Archaeologists excavating at Colonial Williamsburg have discovered a barracks for soldiers of the Continental Army during the American War of Independence.

Pleistocene hunter-gatherers settled in Cyprus thousands of years earlier than previously thought

Archaeologists have found that Pleistocene hunter-gatherers settled in Cyprus thousands of years earlier than previously thought.

Groundbreaking study reveals new insights into chosen locations of pyramids’ sites

A groundbreaking study, published in the journal Communications Earth & Environment, has revealed why the largest concentration of pyramids in Egypt were built along a narrow desert strip.

Soldiers’ graffiti depicting hangings found on door at Dover Castle

Conservation of a Georgian door at Dover Castle has revealed etchings depicting hangings and graffiti from time of French Revolution.

Archaeologists find Roman villa with ornate indoor plunge pool

Archaeologists from the National Institute of Cultural Heritage have uncovered a Roman villa with an indoor plunge pool during excavations at the port city of Durrës, Albania.

Archaeologists excavate medieval timber hall

Archaeologists from the University of York have returned to Skipsea in East Yorkshire, England, to excavate the remains of a medieval timber hall.