Date:

Death spiral: a black hole spins on its side

Researchers from the University of Turku, Finland, found that the axis of rotation of a black hole in a binary system is tilted more than 40 degrees relative to the axis of stellar orbit. The finding challenges current theoretical models of black hole formation.

The observation by the researchers from Tuorla Observatory in Finland is the first reliable measurement that shows a large difference between the axis of rotation of a black hole and the axis of a binary system orbit. The difference between the axes measured by the researchers in a binary star system called MAXI J1820+070 was more than 40 degrees.

- Advertisement -

Often for the space systems with smaller objects orbiting around the central massive body, the own rotation axis of this body is to a high degree aligned with the rotation axis of its satellites. This is true also for our solar system: the planets orbit around the Sun in a plane, which roughly coincides with the equatorial plane of the Sun. The inclination of the Sun rotation axis with respect to orbital axis of the Earth is only seven degrees.

“The expectation of alignment, to a large degree, does not hold for the bizarre objects such as black hole X-ray binaries. The black holes in these systems were formed as a result of a cosmic cataclysm – the collapse of a massive star. Now we see the black hole dragging matter from the nearby, lighter companion star orbiting around it. We see bright optical and X-ray radiation as the last sigh of the infalling material, and also radio emission from the relativistic jets expelled from the system,” says Juri Poutanen, Professor of Astronomy at the University of Turku and the lead author of the publication.

By following these jets, the researchers were able to determine the direction of the axis of rotation of the black hole very accurately. As the amount of gas falling from the companion star to the black hole later began to decrease, the system dimmed, and much of the light in the system came from the companion star. In this way, the researchers were able to measure the orbit inclination using spectroscopic techniques, and it happened to nearly coincide with the inclination of the ejections.

“To determine the 3D orientation of the orbit, one additionally needs to know the position angle of the system on the sky, meaning how the system is turned with respect to the direction to the North on the sky. This was measured using polarimetric techniques,” says Juri Poutanen.

- Advertisement -

The results published in the Science magazine open interesting prospects towards studies of black hole formation and evolution of such systems, as such extreme misalignment is hard to get in many black hole formation and binary evolution scenarios.

“The difference of more than 40 degrees between the orbital axis and the black hole spin was completely unexpected. Scientists have often assumed this difference to be very small when they have modeled the behavior of matter in a curved time space around a black hole. The current models are already really complex, and now the new findings force us to add a new dimension to them,” Poutanen states.

The key finding was made using the in-house built polarimetric instrument DIPol-UF mounted at the Nordic Optical Telescope, which is owned by the University of Turku jointly with the Aarhus University in Denmark.

University of Turku

Header Image – Artist impression of the X-ray binary system MAXI J1820+070 containing a black hole (small black dot at the centre of the gaseous disk) and a companion star. A narrow jet is directed along the black hole spin axis, which is strongly misaligned from the rotation axis of the orbit. Image Credit : R. Hynes

- Advertisement -

Stay Updated: Follow us on iOS, Android, Google News, Facebook, Instagram, Twitter, Threads, TikTok, LinkedIn, and our newsletter

spot_img
Mark Milligan
Mark Milligan
Mark Milligan is a multi-award-winning journalist and the Managing Editor at HeritageDaily. His background is in archaeology and computer science, having written over 8,000 articles across several online publications. Mark is a member of the Association of British Science Writers (ABSW), the World Federation of Science Journalists, and in 2023 was the recipient of the British Citizen Award for Education, the BCA Medal of Honour, and the UK Prime Minister's Points of Light Award.
spot_img
spot_img

Mobile Application

spot_img

Related Articles

Submerged thermal baths found in Gulf of Naples 

Archaeologists have discovered a preserved Roman bathhouse in the partially submerged ruins of Baiae on the northwest shore of the Gulf of Naples.

Viking-Age hoard reveals trade between England and the Islamic World

A Viking-Age silver hoard unearthed in Bedale, North Yorkshire, is providing new insights into wealth and trading links between England and the Islamic World.

Exploration of Grodziec Forest District reveals three treasure hoards

In the quiet woods near Kalisz, Poland, a group of amateur archaeologists uncovered not one, but three extraordinary treasures over the span of just five weeks this summer.

Ancient bipyramidal ingots found submerged in Sava River

A large cache of bipyramidal ingots has been discovered in the Sava River in the Posavina Canton, Bosnia and Herzegovina.

Rare Migration Period brooch unearthed in Lapland

A rare Migration Period brooch has been discovered in Kemi, Lapland.

Unparalleled Bronze Age discovery

Detectorists from the Kociewskie Poszukiwacze Association have discovered a perfectly preserved Bronze Age bracelet, described by experts as unparalleled.

British Bronze Age sickle unearthed in Lower Seine Valley

Archaeologists from the National Institute for Preventive Archaeological Research (INRAP) have announced the discovery of a Bronze Age sickle in France’s Lower Seine Valley.

Thracian warrior tomb discovered in Bulgaria

A Thracian warrior tomb has been discovered in Bulgaria’s Topolovgrad region, which archaeologists have described as the country’s richest example from the Hellenistic-era.