Date:

The Search For Second Earth

In the search for planets capable of sustaining life, an international research team with members from ETH has taken a significant step forward.

As the researchers reported recently in the journal Nature Communications, they found signs of a Neptune-sized planet in the Alpha Centauri star system, a mere 4.4 light years away from Earth. This exoplanet is located in a zone that may offer suitable conditions for life. The team was able to collect data with unprecedented sensitivity, thus registering even very weak signals.

- Advertisement -

Earth is a disruptive factor

Thanks to the new process, the researchers have advanced one step closer to a major goal of exoplanet research: the discovery of Earth-like planets capable of supporting life. Direct imaging of planets delivers information about the composition of their atmospheres and possibly even signs of life. To date, however, direct measurements have mostly found exoplanets that are larger than Jupiter and orbit far away from very young host stars. In other words, these planets fall outside the habitable zone where liquid water could form.

One reason that the search for Earth-like planets has so far proved fruitless is that it has been conducted in the near-infrared range, even though Earth-like planets that might have water are brightest in the mid-infrared range. Yet it is precisely in that range that measurements with normal telescopes are difficult, because that is where the Earth and its atmosphere are also at their brightest. This means the faint signals from exoplanets are lost in particularly strong background noise.

100 hours of observations

- Advertisement -

As reported in their study, the researchers have now been able to overcome this difficulty and take measurements in the mid-infrared range. They used the Very Large Telescope at the European Southern Observatory in Chile to examine Alpha Centauri stars A and B, logging nearly 100 hours over the course of a month. “Keeping the telescope pointed at the same star for such a long time is highly unusual,” explains Anna Boehle, a postdoc in ETH Professor Sascha Quanz’s group. As second author of the study, Boehle was heavily involved in evaluating the data. “We assessed more than five million images,” she says.

To be able to detect the faint signals from potential planets, the researchers not only processed a huge volume of data, they also employed two sophisticated measurement techniques: one was to use a new deformable secondary telescope mirror, which made it possible to correct for distortions in the light coming through the Earth’s atmosphere; and the other was to use a coronagraph to alternately block the light from each of the stars in turn at very short intervals. This let the scientists further reduce signal noise while examining the surroundings of both stars.

Signs of a planet

“Our findings indicate that in principle, this process enables us to discover smaller terrestrial planets capable of hosting life,” Boehle explains, “and it represents a clear improvement over previous observation methods.” Indeed, in their data the researchers found a light signal that may originate from a Neptune-sized planet. Boehle says, “Whether or not this signal is actually from a planet requires further study. To that end, we plan to combine the infrared measurements with other measurement methods.”

ETH ZURICH

Header Image Credit : Public Domain

- Advertisement -

Stay Updated: Follow us on iOS, Android, Google News, Facebook, Instagram, Twitter, Threads, TikTok, LinkedIn, and our newsletter

spot_img
Mark Milligan
Mark Milligan
Mark Milligan is a multi-award-winning journalist and the Managing Editor at HeritageDaily. His background is in archaeology and computer science, having written over 8,000 articles across several online publications. Mark is a member of the Association of British Science Writers (ABSW), the World Federation of Science Journalists, and in 2023 was the recipient of the British Citizen Award for Education, the BCA Medal of Honour, and the UK Prime Minister's Points of Light Award.
spot_img
spot_img

Mobile Application

spot_img

Related Articles

Neo-Assyrian winged bull could be largest ever found

Archaeologists have unearthed the remains of what could be the largest known Neo-Assyrian lamassu – a protective deity depicting a winged bull with a human head.

Mollusc shells are unlocking the secrets of Ancient Egypt’s Saqqara necropolis

Mollusc shells unearthed during excavations at the Saqqara necropolis are offering new insights into the customs and daily life of the region’s ancient inhabitants.

5,000-year-old Dolmen complex discovered in Teba

Archaeologists from the University of Cádiz have discovered a monumental dolmen complex dating back more than 5,000-years-ago in the Spanish town of Teba in Malaga.

Archaeologists search for missing WWII Pilot at P-47 crash site in Essex

A six-week recovery project is underway in North Essex to investigate the crash site of a US Army Air Forces P-47 Thunderbolt that went down during World War II.

Megalith “dragon stones” were likely part of an ancient water cult

A new study, published in the journal npj suggests that the mysterious dragon stones found across the highlands of Armenia may relate to water veneration practices of communities over six millennia ago.

Archaeologists investigate sacred Piedra Letra monument

Archaeologists from the National Institute of Anthropology and History (INAH) have conducted a study of Piedra Letra, located on a hill overlooking Huehuetónoc in the Mexican state of Guerrero.

Monument linked to Iberian star mythology discovered in Jódar

Archaeologists from the Research Institute for Iberian Archaeology (IAI) at the University of Jaén (UJA) have discovered a monument connected to the sun and other celestial bodies within Iberian mythology.

Project is restoring Costa Rica’s mysterious stone spheres

A joint team of specialists from Costa Rica and Mexico are restoring three stone spheres at the Finca 6 Museum Site in Palmar de Osa.