New Theory Explains Possible Origin of the Armageddon-Causing Object That Killed the Dinosaurs

Related Articles

It forever changed history when it crashed into Earth about 66 million years ago.

The Chicxulub impactor, as it’s known, left behind a crater off the coast of Mexico that spans 93 miles and runs 12 miles deep. Its devastating impact brought the reign of the dinosaurs to an abrupt and calamitous end by triggering their sudden mass extinction, along with the end of almost three-quarters of the plant and animal species living on Earth.

The enduring puzzle: Where did the asteroid or comet originate, and how did it come to strike Earth? Now, a pair of researchers at the Center for Astrophysics | Harvard & Smithsonian believe they have the answer.

 

In a study published today in Nature’s Scientific Reports, Harvard University astrophysics undergraduate student Amir Siraj and astronomer Avi Loeb put forth a new theory that could explain the origin and journey of this catastrophic object.

Using statistical analysis and gravitational simulations, Siraj and Loeb calculate that a significant fraction of long-period comets originating from the Oort cloud, an icy sphere of debris at the edge of the solar system, can be bumped off-course by Jupiter’s gravitational field during orbit.

“The solar system acts as a kind of pinball machine,” explains Siraj, who is pursuing bachelor’s and master’s degrees in astrophysics, in addition to a master’s degree in piano performance at the New England Conservatory of Music. “Jupiter, the most massive planet, kicks incoming long-period comets into orbits that bring them very close to the sun.”

During close passage to the sun, the comets — nicknamed “sungrazers” –can experience powerful tidal forces that break apart pieces of the rock and ultimately, produce cometary shrapnel.

“In a sungrazing event, the portion of the comet closer to the sun feels a stronger gravitational pull than the part that is further, resulting in a tidal force across the object,” Siraj says. “You can get what’s called a tidal disruption event, in which a large comet breaks up into many smaller pieces. And crucially, on the journey back to the Oort cloud, there’s an enhanced probability that one of these fragments hit the Earth.”

The new calculations from Siraj and Loeb’s theory increase the chances of long-period comets impacting Earth by a factor of about 10, and show that about 20 percent of long-period comets become sungrazers.

The pair say that their new rate of impact is consistent with the age of Chicxulub, providing a satisfactory explanation for its origin and other impactors like it.

“Our paper provides a basis for explaining the occurrence of this event,” Loeb says. “We are suggesting that, in fact, if you break up an object as it comes close to the sun, it could give rise to the appropriate event rate and also the kind of impact that killed the dinosaurs.”

Evidence found at the Chicxulub crater suggests the rock was composed of carbonaceous chondrite. Siraj and Loeb’s hypothesis might also explain this unusual composition.

A popular theory on the origin of Chicxulub claims that the impactor originated from the main belt, which is an asteroid population between the orbit of Jupiter and Mars. However, carbonaceous chondrites are rare amongst main-belt asteroids, but possibly widespread amongst long-period comets, providing additional support to the cometary impact hypothesis.

Other similar craters display the same composition. This includes an object that hit about 2 billion years ago and left the Vredefort crater in South Africa, which is the largest confirmed crater in Earth’s history, and the impactor that left the Zhamanshin crater in Kazakhstan, which is the largest confirmed crater within the last million years. The researchers say that the timing of these impacts support their calculations on the expected rate of Chicxulub-sized tidally disrupted comets.

Siraj and Loeb say their hypothesis can be tested by further studying these craters, others like them, and even ones on the surface of the moon to determine the composition of the impactors. Space missions sampling comets can also help.

Aside from composition of comets, the new Vera Rubin Observatory in Chile may be able to observe tidal disruption of long-period comets after it becomes operational next year.

“We should see smaller fragments coming to Earth more frequently from the Oort cloud,” Loeb says. “I hope that we can test the theory by having more data on long-period comets, get better statistics, and perhaps see evidence for some fragments.”

Loeb says understanding this is not just crucial to solving a mystery of Earth’s history but could prove pivotal if such an event were to threaten the planet.

“It must have been an amazing sight, but we don’t want to see that again,” he said.

HARVARD-SMITHSONIAN CENTER FOR ASTROPHYSICS

Header Image Credit – Public Domain

Download the HeritageDaily mobile application on iOS and Android

More on this topic

LATEST NEWS

Prehistoric killing machine exposed

Judging by its massive, bone-crushing teeth, gigantic skull and powerful jaw, there is no doubt that the Anteosaurus, a premammalian reptile that roamed the African continent 265 to 260 million years ago - during a period known as the middle Permian - was a ferocious carnivore.

Noushabad – The Hidden Underground City

Noushabed, also called Oeei or Ouyim is an ancient subterranean city, built beneath the small town of Nushabad in present-day Iran.

10 British Iron Age Hill Forts

A hill fort is a type of earthworks used as a fortified refuge or defended settlement, located to exploit a rise in elevation for defensive advantage.

Stabiae – The Roman Resort Buried by Mount Vesuvius

Stabiae was an ancient Roman town and seaside resort near Pompeii, that was largely buried during the AD 79 eruption of Mount Vesuvius in present-day Italy.

Astronomers Accurately Measure the Temperature of Red Supergiant Stars

Red supergiants are a class of star that end their lives in supernova explosions. Their lifecycles are not fully understood, partly due to difficulties in measuring their temperatures. For the first time, astronomers develop an accurate method to determine the surface temperatures of red supergiants.

Researchers Overturn Hypothesis That Ancient Mammal Ancestors Moved Like Modern Lizards

The backbone is the Swiss Army Knife of mammal locomotion. It can function in all sorts of ways that allows living mammals to have remarkable diversity in their movements.

Archaeologists Discover one of Poland’s Largest Megalithic Tomb Complexes

Archaeologists excavating in Poland have discovered a large megalithic complex, containing several dozen tombs dating from 5500 years ago.

New Technology Allows Scientists First Glimpse of Intricate Details of Little Foot’s Life

In June 2019, an international team brought the complete skull of the 3.67-million-year-old Little Foot Australopithecus skeleton, from South Africa to the UK and achieved unprecedented imaging resolution of its bony structures and dentition in an X-ray synchrotron-based investigation at the UK's national synchrotron, Diamond Light Source.

Popular stories

Ani – The Abandoned Medieval City

Ani is a ruined medieval city, and the former capital of the Bagratid Armenian kingdom, located in the Eastern Anatolia region of the Kars province in present-day Turkey.

Interactive Map of Earth’s Asteroid and Meteor Impact Craters

Across the history of our planet, around 190 terrestrial impact craters have been identified that still survive the Earth’s geological processes, with the most recent event occurring in 1947 at the Sikhote-Alin Mountains of south-eastern Russia.

The Sunken Town of Pavlopetri

Pavlopetri, also called Paulopetri, is a submerged ancient town, located between the islet of Pavlopetri and the Pounta coast of Laconia, on the Peloponnese peninsula in southern Greece.

Exploring the Avebury Stone Circle Landscape

The area was designated part of the Stonehenge, Avebury and Associated Sites by UNESCO in 1986, in recognition for one of the most architecturally sophisticated stone circles in the world, in addition to the rich Neolithic, and Bronze age remains found nearby, such as the West Kennet Avenue, Beckhampton Avenue, West Kennet Long Barrow, the Sanctuary, and Windmill Hill.