Date:

How Rocks Rusted on Earth and Turned Red

How did rocks rust on Earth and turn red? A Rutgers-led study has shed new light on the important phenomenon and will help address questions about the Late Triassic climate more than 200 million years ago, when greenhouse gas levels were high enough to be a model for what our planet may be like in the future.

“All of the red color we see in New Jersey rocks and in the American Southwest is due to the natural mineral hematite,” said lead author Christopher J. Lepre, an assistant teaching professor in the Department of Earth and Planetary Sciences in the School of Arts and Sciences at Rutgers University-New Brunswick. “As far as we know, there are only a few places where this red hematite phenomenon is very widespread: one being the geologic ‘red beds’ on Earth and another is the surface of Mars. Our study takes a significant step forward toward understanding how long it takes for redness to form, the chemical reactions involved and the role hematite plays.”

- Advertisement -

The research by Lepre and a Columbia University scientist is in the journal Proceedings of the National Academy of Sciences. It challenges conventional thinking that hematite has limited use for interpreting the ancient past because it is a product of natural chemical changes that occurred long after the beds were initially deposited.

Lepre demonstrated that hematite concentrations faithfully track 14.5 million years of Late Triassic monsoonal rainfall over the Colorado Plateau of Arizona when it was on the ancient supercontinent of Pangea. With this information, he assessed the interrelationships between environmental disturbances, climate and the evolution of vertebrates on land.

Lepre examined part of a 1,700-foot-long rock core from the Chinle Formation in the Petrified Forest National Park in Arizona (the Painted Desert) that is housed at Rutgers. Rutgers-New Brunswick Professor Emeritus Dennis V. Kent examined the same core for a Rutgers-led study that found that gravitational tugs from Jupiter and Venus slightly elongate Earth’s orbit every 405,000 years and influenced Earth’s climate for at least 215 million years, allowing scientists to better date events like the spread of dinosaurs.

Lepre measured the visible light spectrum to determine the concentration of hematite within red rocks. To the scientists’ knowledge, it is the first time this method has been used to study rocks this old, dating to the Late Triassic epoch more than 200 million years ago. Many scientists thought the redness was caused much more recently by the iron in rocks reacting with air, just like rust on a bicycle. So for decades, scientists have viewed hematite and its redness as largely unimportant.

- Advertisement -

“The hematite is indeed old and probably resulted from the interactions between the ancient soils and climate change,” Lepre said. “This climate information allows us to sort out some causes and effects – whether they were due to climate change or an asteroid impact at Manicouagan in Canada, for example – for land animals and plants when the theropod dinosaurs (early ancestors of modern birds and Tyrannosaurus rex) were rising to prominence.”

The scientists, in collaboration with Navajo Nation members, have submitted a multi-million dollar grant proposal to retrieve more cores at the Colorado Plateau that will include rocks known to record a very rapid atmospheric change in carbon dioxide similar to its recent doubling as a result of human activity.

RUTGERS UNIVERSITY

Header Image Credit : NPS

- Advertisement -
spot_img
Mark Milligan
Mark Milligan
Mark Milligan is multi-award-winning journalist and the Managing Editor at HeritageDaily. His background is in archaeology and computer science, having written over 7,500 articles across several online publications. Mark is a member of the Association of British Science Writers (ABSW), the World Federation of Science Journalists, and in 2023 was the recipient of the British Citizen Award for Education, the BCA Medal of Honour, and the UK Prime Minister's Points of Light Award.
spot_img

Mobile Application

spot_img

Related Articles

Archaeologists uncover 4,200-year-old “zombie grave”

Archaeologists from the State Office for Monument Preservation and Archaeology Saxony-Anhalt have uncovered a "zombie grave" during excavations near Oppin, Germany.

Archaeologists uncover 2,000-year-old clay token used by pilgrims

A clay token unearthed by the Temple Mount Sifting Project, is believed to have served pilgrims exchanging offerings during the Passover festival 2,000-years-ago.

Moon may have influenced Stonehenge construction

A study by a team of archaeoastronomers are investigating the possible connection of the moon in influencing the Stonehenge builders.

Archaeologists explore the resettlement history of the Iron-Age metropolis of Tel Hazor

Archaeologists are conducting a study of the Iron-Age metropolis of Tel Hazor to understand how one of the largest “megacities” of the Bronze Age was abandoned and then resettled.

Excavation uncovers possible traces of Villa Augustus at Somma Vesuviana

Archaeologists from the University of Tokyo have uncovered further evidence of the Villa of Augustus during excavations at Somma Vesuviana.

Study reveals new insights into wreck of royal flagship Gribshunden

Underwater archaeologists from Södertörn University, in collaboration with the CEMAS/Institute for Archaeology and Ancient Culture at Stockholm University, have conducted an investigation of the wreck of the royal flagship Gribshunden.

Microbe X-32 – Is the Plasticene Era coming to an end?

Breaking, a new venture in collaboration with Harvard and the Wyss Institute, is claiming that a new discovery, Microbe X-32, can naturally break down polyolefins, polyesters, and polyamides in just 22 months.

Stone sphere among artefacts repatriated to Costa Rica

395 pre-Columbian artefacts have been repatriated to Costa Rica thanks to a grant by the United States Embassy to the Cultural Agreements Fund.