Research Explains Why Crocodiles Changed so Little Since Age of Dinosaurs

Related Articles

Related Articles

New research by scientists at the University of Bristol explains how a ‘stop-start’ pattern of evolution, governed by environmental change, could explain why crocodiles have changed so little since the age of the dinosaurs.

Crocodiles today look very similar to ones from the Jurassic period some 200 million years ago. There are also very few species alive today – just 25. Other animals such as lizards and birds have achieved a diversity of many thousands of species in the same amount of time or less.

Prehistory also saw types of crocodile we don’t see today, including giants as big as dinosaurs, plant-eaters, fast runners and serpentine forms that lived in the sea.

 

In the new research, published today in the journal Nature Communications Biology, the scientists explain how crocodiles follow a pattern of evolution known as ‘punctuated equilibrium’.

The rate of their evolution is generally slow, but occasionally they evolve more quickly because the environment has changed. In particular, this new research suggests that their evolution speeds up when the climate is warmer, and that their body size increases.

Lead author Dr Max Stockdale from the University of Bristol’s School of Geographical Sciences, said: “Our analysis used a machine learning algorithm to estimate rates of evolution. Evolutionary rate is the amount of change that has taken place over a given amount of time, which we can work out by comparing measurements from fossils and taking into account how old they are.

“For our study we measured body size, which is important because it interacts with how fast animals grow, how much food they need, how big their populations are and how likely they are to become extinct.”

The findings show that the limited diversity of crocodiles and their apparent lack of evolution is a result of a slow evolutionary rate. It seems the crocodiles arrived at a body plan that was very efficient and versatile enough that they didn’t need to change it in order to survive.

This versatility could be one explanation why crocodiles survived the meteor impact at the end of the Cretaceous period, in which the dinosaurs perished. Crocodiles generally thrive better in warm conditions because they cannot control their body temperature and require warmth from the environment.

The climate during the age of dinosaurs was warmer than it is today, and that may explain why there were many more varieties of crocodile than we see now. Being able to draw energy from the sun means they do not need to eat as much as a warm-blooded animal like a bird or a mammal.

Dr Stockdale added: “It is fascinating to see how intricate a relationship exists between the earth and the living things we share it with. The crocodiles landed upon a lifestyle that was versatile enough to adapt to the enormous environmental changes that have taken place since the dinosaurs were around.”

The next step for the team’s research is to find out why some types of prehistoric crocodile died out, while others didn’t.

UNIVERSITY OF BRISTOL

Header Image – Public Domain

Download the HeritageDaily mobile application on iOS and Android

More on this topic

LATEST NEWS

Study Sheds New Light on the Behaviour of the Giant Carnivorous Dinosaur Spinosaurus

New research from Queen Mary University of London and the University of Maryland, has reignited the debate around the behaviour of the giant dinosaur Spinosaurus.

New Skull of Tube-Crested Dinosaur Reveals Evolution of Bizarre Crest

The first new skull of a rare species of the dinosaur Parasaurolophus (recognized by the large hollow tube that grows on its head) discovered in 97 years.

Women Influenced Coevolution of Dogs and Humans

In a cross-cultural analysis, Washington State University researchers found several factors may have played a role in building the mutually beneficial relationship between humans and dogs, including temperature, hunting and surprisingly - gender.

Dinosaur Embryo Helps Crack Baby Tyrannosaur Mystery

They are among the largest predators ever to walk the Earth, but experts have discovered that some baby tyrannosaurs were only the size of a Border Collie dog when they took their first steps.

First People to Enter the Americas Likely Did so With Their Dogs

The first people to settle in the Americas likely brought their own canine companions with them, according to new research which sheds more light on the origin of dogs.

Climate Change in Antiquity: Mass Emigration Due to Water Scarcity

The absence of monsoon rains at the source of the Nile was the cause of migrations and the demise of entire settlements in the late Roman province of Egypt.

Archaeologists Discover Bas-Relief of Golden Eagle at Aztec Templo Mayor

A team of archaeologists from the Instituto Nacional de Antropologia e Historia (INAH) have announced the discovery of a bas-relief depicting an American golden eagle (aquila chrysaetos canadensis).

Lost Alaskan Fort of the Tlingit Discovered

Researchers from Cornell University and the National Park Service have discovered the remnants of a wooden fort in Alaska – the Tlingit people’s last physical bulwark against Russian colonisation forces in 1804.

Popular stories

Exploring the Stonehenge Landscape

The Stonehenge Landscape contains over 400 ancient sites, that includes burial mounds known as barrows, Woodhenge, the Durrington Walls, the Stonehenge Cursus, the Avenue, and surrounds the monument of Stonehenge which is managed by English Heritage.

The Iron Age Tribes of Britain

The British Iron Age is a conventional name to describe the independent Iron Age cultures that inhabited the mainland and smaller islands of present-day Britain.

The Roman Conquest of Wales

The conquest of Wales began in either AD 47 or 48, following the landing of Roman forces in Britannia sent by Emperor Claudius in AD 43.

Vallum Antonini – The Antonine Wall

The Antonine Wall (Vallum Antonini) was a defensive wall built by the Romans in present-day Scotland, that ran for 39 miles between the Firth of Forth, and the Firth of Clyde (west of Edinburgh along the central belt).