Date:

A Resistant Material Against Microorganisms is Created to Restore Cultural Heritage

Solar radiation, rain, humidity and extreme temperatures. Cultural heritage is exposed to an array of external factors that deteriorate it over time.

Among them, the most aggressive may well be microbial contamination, caused by an ample ecosystem of fungi, algae, bacteria and microscopic lichens that grow inside the pores of the materials the buildings are made of and they make these buildings less resistant to other external agents, speeding up the deterioration process over time.

When restoring historical monuments, it is important to use tough materials that can withstand these microorganisms. This task is complex, given that the materials used in these kinds of restorations must be in accordance with the original materials, made of plaster, lime mortar and stones such as limestone or marble. Cement and concrete, materials commonly used in the latest research, are ruled out as they are incompatible with materials such as lime mortar and could even worsen the problem.

A research team from the University Research Institute into Fine Chemistry and Nanochemistry at the University of Cordoba (the FQM 214 and FQM 175 groups) and Seville’s Institute of Natural Resources and Agrobiology of the Spanish National Research Council (abbreviated to IRNAS-CSIC in Spanish) worked together to create a biocide additive, as in one that kills microorganisms, that can be incorporated into materials used to rebuild historic monuments and buildings.

- Advertisement -

“The materials that contain these kinds of chemical compounds are widely used in restoration but their effectiveness usually lasts for a brief amount of time -about two years – since the external agents, in addition to deteriorating the material, end up weakening its biocidal properties”, explains Adrián Pastor, one of the researchers on the study which is part of his doctoral research for his thesis titled “New functional materials to decontaminate cultural heritage and urban habitats”. The study has been performed under the guidance of Dr. Luis Sánchez and Dr. Ivana Pavlovic and with the participation of Dr. Manuel Cruz Yusta and Dr. Beatriz Gámiz (RNM 124).

In this research, the team tested hydraulic lime mortar to which they added carbendazim, a biocide compound generally widely used in paint, as it has low water solubility and is therefore more water resistant. In order to do so, they compared, on the one hand, the antimicrobial effectiveness of a lime mortar to which carbendazim was directly added and on the other hand, a lime mortar whose clay contained an anchored biocidal compound.

Both underwent several microbiological tests in order to test their ability to fight microorganisms and a leaching process, in which the soluble parts of a material are removed, simulating various rain cycles in a short amount of time.

“In the first microbiological test, we verified that the first mortar, to which we directly added carbendazim, had a somewhat greater biocidal capacity. However, after the leaching processes, we verified that the second mortar, that had carbendazim anchored to the clay, showed better results since the biocide compound was released more slowly and therefore, its effect is more long-lasting”, explains Adrián Pastor.

This is a preliminary study that requires further research to get this material under study on the market, meaning a larger scale study, as well as studying the material’s specific physical properties in order to verify that it complies with regulations regarding durability, adhesion and other properties.

UNIVERSITY OF CÓRDOBA

Header Image Credit – Public Domain

- Advertisement -
Mark Milligan
Mark Milligan
Mark Milligan is an award winning journalist and the Managing Editor at HeritageDaily. His background is in archaeology and computer science, having written over 7,500 articles across several online publications. Mark is a member of the Association of British Science Writers (ABSW), the World Federation of Science Journalists, and in 2023 was the recipient of the British Citizen Award for Education and the BCA Medal of Honour.

Mobile Application

spot_img

Related Articles

Inca quarries and road network found in Cañete

Archaeologists have discovered Inca quarries and a road network in Cerros de Quilmaná and Cerro Quinta Freno, in the province of Cañete, Peru.

Prison bakery for enslaved people found in Roman Pompeii

Archaeologists have uncovered a Prison bakery during recent excavations in Pompeii.

Baboons in Ancient Egypt were raised in captivity before being mummified

In a new study published in the open-access journal PLOS ONE, researchers examined a collection of baboon mummies from the ancient Egyptian site of Gabbanat el-Qurud, the so-called Valley of the Monkeys on the west bank of Luxor.

Archaeologists find 22 mummified burials in Peru

A Polish-Peruvian team of archaeologists have uncovered 22 mummified burials in Barranca, Peru.

Oldest prehistoric fortress found in remote Siberia

An international team, led by archaeologists from Freie Universität Berlin has uncovered an ancient prehistoric fortress in a remote region of Siberia known as Amnya.

Top 10 archaeological discoveries of 2023

The field of archaeology has been continuously evolving in 2023, making significant strides in uncovering new historical findings, preserving cultural heritage, and employing innovative technologies to study the past.

War in Ukraine sees destruction of cultural heritage not witnessed since WW2

The full-scale Russian invasion of Ukraine on 24 February 2022 has resulted in a significant loss of human lives and the national and international displacement of many Ukrainian people.

Archaeologists find five Bronze Age axes in the forests of Kociewie

According to an announcement by the Pomeranian Provincial Conservator of Monuments, archaeologists have discovered five Bronze Age axes in Starogard Forest District, located in Kociewie, Poland.