Date:

Meteorite Strikes May Create Unexpected Form of Silica

When a meteorite hurtles through the atmosphere and crashes to Earth, how does its violent impact alter the minerals found at the landing site?

What can the short-lived chemical phases created by these extreme impacts teach scientists about the minerals existing at the high-temperature and pressure conditions found deep inside the planet?

- Advertisement -

New work led by Carnegie’s Sally June Tracy examined the crystal structure of the silica mineral quartz under shock compression and is challenging longstanding assumptions about how this ubiquitous material behaves under such intense conditions. The results are published in Science Advances.

“Quartz is one of the most abundant minerals in Earth’s crust, found in a multitude of different rock types,” Tracy explained. “In the lab, we can mimic a meteorite impact and see what happens.”

Tracy and her colleagues–Washington State University’s (WSU) Stefan Turneaure and Princeton University’s Thomas Duffy, a former Carnegie Fellow–used a specialized cannon-like gas gun to accelerate projectiles into quartz samples at extremely high speeds–several times faster than a bullet fired from a rifle. Special x-ray instruments were used to discern the crystal structure of the material that forms less than one-millionth of a second after impact. Experiments were carried out at the Dynamic Compression Sector (DCS), which is operated by WSU and located at the Advanced Photon Source, Argonne National Laboratory.

Quartz is made up of one silicon atom and two oxygen atoms arranged in a tetrahedral lattice structure. Because these elements are also common in the silicate-rich mantle of the Earth, discovering the changes quartz undergoes at high-pressure and -temperature conditions, like those found in the Earth’s interior, could also reveal details about the planet’s geologic history.

- Advertisement -

When a material is subjected to extreme pressures and temperatures, its internal atomic structure can be re-shaped, causing its properties to shift. For example, both graphite and diamond are made from carbon. But graphite, which forms at low pressure, is soft and opaque, and diamond, which forms at high pressure, is super-hard and transparent. The different arrangements of carbon atoms determine their structures and their properties, and that in turn affects how we engage with and use them.

Despite decades of research, there has been a long-standing debate in the scientific community about what form silica would take during an impact event, or under dynamic compression conditions such as those deployed by Tracy and her collaborators. Under shock loading, silica is often assumed to transform to a dense crystalline form known as stishovite–a structure believed to exist in the deep Earth. Others have argued that because of the fast timescale of the shock the material will instead adopt a dense, glassy structure.

Tracy and her team were able to demonstrate that counter to expectations, when subjected to a dynamic shock of greater than 300,000 times normal atmospheric pressure, quartz undergoes a transition to a novel disordered crystalline phase, whose structure is intermediate between fully crystalline stishovite and a fully disordered glass. However, the new structure cannot last once the burst of intense pressure has subsided.

“Dynamic compression experiments allowed us to put this longstanding debate to bed,” Tracy concluded. “What’s more, impact events are an important part of understanding planetary formation and evolution and continued investigations can reveal new information about these processes.”

CARNEGIE INSTITUTION FOR SCIENCE

Header Image Credit : Public Domain

- Advertisement -

Stay Updated: Follow us on iOS, Android, Google News, Facebook, Instagram, Twitter, Threads, TikTok, LinkedIn, and our newsletter

spot_img
Mark Milligan
Mark Milligan
Mark Milligan is a multi-award-winning journalist and the Managing Editor at HeritageDaily. His background is in archaeology and computer science, having written over 8,000 articles across several online publications. Mark is a member of the Association of British Science Writers (ABSW), the World Federation of Science Journalists, and in 2023 was the recipient of the British Citizen Award for Education, the BCA Medal of Honour, and the UK Prime Minister's Points of Light Award.
spot_img
spot_img

Mobile Application

spot_img

Related Articles

Largest Bronze Age hoard in Upper Lusatia unearthed in Saxony

Archaeologists in eastern Germany have uncovered the largest Bronze Age hoard ever found in Upper Lusatia and the second largest in all of Saxony.

Mausoleum discovery is inspired by tomb of Augustus

Excavations at Saint-Romain-en-Gal near Lyon have revealed a mausoleum inspired by the monumental tomb of Augustus in Rome.

Stele discovered with a carved eagle and Greek inscription 

Archaeologists have unearthed a heavy black basalt stele in Manbij, a town east of Aleppo, Syria.

Mysterious cave monument discovered in Thai forest sanctuary

A routine patrol by forest rangers has led to the discovery of a mysterious cave monument near the Khwae Noi River in the Khao Noi Khao Pradu Wildlife Sanctuary.

Secrets of the Ice: Archaeologists unearth frozen treasures

Archaeologists from Secrets of the Ice, a groundbreaking glacier archaeology project, have made several significant discoveries in the Jotunheimen National Park, Norway.

Hoard of 600 medieval coins found in Southern Poland

A group of metal detectorists have unearthed a hoard of 600 medieval coins during a survey of the forests near Bochnia, a town on the river Raba in southern Poland.

Viking Age discoveries found frozen in ice

In 2011, archaeologists from Secrets of the Ice, a glacier archaeology program, uncovered the remains of a Viking Age packhorse net on a remote Norwegian mountain.

Elite Roman tomb discovery in ancient Sillyon

Archaeologists from the Ministry of Culture and Tourism’s Heritage for the Future Project have discovered an elite Roman tomb during excavations of ancient Sillyon.