Date:

Innovative Method Opens up New Perspectives for Reconstructing Climatic Conditions of Past Eras

Corals precipitate their calcareous skeletons (calcium carbonate) from seawater. Over thousands of years, vast coral reefs form due to the deposition of this calcium carbonate.

During precipitation, corals prefer carbonate groups containing specific variants of oxygen (chemical symbol: O). For example, the lower the water temperature, the higher the abundance of a heavy oxygen variant, known as isotope 18O, within the precipitated carbonate. Unfortunately, the 18O abundance of the seawater also influences the abundance of 18O in the calcium carbonate – and the contribution of 18O from seawater cannot be resolved when determining temperatures based on carbonate 18O abundances alone.

- Advertisement -

A great step forward was the discovery that the isotopic composition of the precipitated carbonate allows temperature determinations independent of the composition of the water if the abundance of a specific, very rare carbonate group is measured. This carbonate group contains two heavy isotopes, a heavy carbon isotope (13C) and a heavy oxygen isotope (18O) which are referred to as “clumped isotopes”. Clumped isotopes are more abundant at lower temperatures.

However, even with this method there was still a problem: The mineralization process itself can affect the incorporation of heavy isotopes in the calcium carbonate (kinetic effects). If unidentified, the bias introduced by such kinetic effects leads to inaccurate temperature determinations. This particularly applies for climatic archives like corals and cave carbonates.

An international research group led by Professor Jens Fiebig at the Department of Geosciences at Goethe University Frankfurt has now found a solution to this problem. They have developed a highly sensitive method by which – in addition to the carbonate group containing 13C and 18O – the abundance of another, even rarer carbonate group can be determined with very high precision. This group also contains two heavy isotopes, namely two heavy oxygen isotopes (18O).

If the theoretical abundances of these two rare carbonate groups are plotted against each other in a graph, the influence of the temperature is represented by a straight line. If, for a given sample, the measured abundances of the two heavy carbonate groups produce a point away from the straight line, this deviation is due to the influence of the mineralization process.

- Advertisement -

David Bajnai, Fiebig’s former PhD student, applied this method to various climatic archives. Among others, he examined various coral species, cave carbonates and the fossil skeleton of a squid-like cephalopod (belemnite).

Today, Dr. Bajnai is a post-doctoral researcher at the University of Cologne. He explains: “We were able to show that – in addition to temperature – the mechanisms of mineralization also greatly affect the composition of many of the carbonates that we examined. In the case of cave carbonates and corals, the observed deviations from the exclusive temperature control confirm model calculations of the respective mineralization processes conducted by Dr. Weifu Guo, our collaborator at the Woods Hole Oceanographic Institution in the USA. The new method, for the first time, makes it possible to quantitatively assess the influence of the mineralization process itself. This way, the exact temperature of carbonate formation can be determined.”

Professor Jens Fiebig is convinced that the new method holds great potential: “We will further validate our new method and identify climatic archives that are particularly suitable for an accurate and highly precise reconstruction of past Earth surface temperatures. We also intend to use our method to study the effect that anthropogenic ocean acidification has on carbonate mineralization, for instance in corals. The new method might even allow us to estimate the pH values of earlier oceans.” If all this succeeds, the reconstruction of environmental conditions that prevailed throughout Earth’s history could be greatly improved, he adds.

GOETHE UNIVERSITY FRANKFURT

Header Image Credit : Public Domain

- Advertisement -
spot_img
Mark Milligan
Mark Milligan
Mark Milligan is multi-award-winning journalist and the Managing Editor at HeritageDaily. His background is in archaeology and computer science, having written over 8,000 articles across several online publications. Mark is a member of the Association of British Science Writers (ABSW), the World Federation of Science Journalists, and in 2023 was the recipient of the British Citizen Award for Education, the BCA Medal of Honour, and the UK Prime Minister's Points of Light Award.
spot_img
spot_img
spot_img

Mobile Application

spot_img

Related Articles

Prince’s royal tomb discovered in Saqqara 

An archaeological mission led by Dr. Zahi Hawass has discovered the tomb of Prince Waser-If-Re, the son of King Userkaf, founder of Egypt’s Fifth Dynasty.

Artefacts from Genghis Khan era rediscovered

Researchers at the Siberian Federal University (SFU) have rediscovered a collection of artefacts from the era of Genghis Khan while cataloguing undocumented objects in the storerooms of the Kytmanov Yenisei Museum-Reserve.

Face to face with royalty: Skull may belong to King Matthias Corvinus

A skull unearthed in the ruins of Hungary’s former royal coronation site may belong to King Matthias Corvinus.

Ancient Egyptian settlement discovered near Alexandria

Archaeologists excavating at Kom el-Nugus west of Alexandria have discovered the remains of a New Kingdom settlement.

Researchers uncover hidden inscriptions in Jerusalem’s Last Supper Room

An international team of researchers, including experts from the Austrian Academy of Sciences (ÖAW), have uncovered Medieval inscriptions hidden on the walls of the Cenacle – the traditional location of the Last Supper.

Thirty Years’ war camp excavation sheds light on military life

Archaeologists from the Bavarian State Office for Monument Preservation (BLfD) have excavated one of the largest fortified military camps of the Thirty Years' War, located in Stein, Germany.

Macabre book discovery at Suffolk Museum

A macabre book bound in human skin has been rediscovered at Moyse's Hall Museum in Bury St Edmunds, Suffolk.

Homeowner discovers hidden tunnel beneath townhouse

A homeowner unexpectedly discovered a hidden tunnel during renovations of their townhouse in Tielt, Belgium.