Presence of airborne dust could signify increased habitability of distant planets

Related Articles

Related Articles

Scientists have expanded our understanding of potentially habitable planets orbiting distant stars by including a critical climate component – the presence of airborne dust.

The researchers suggest that planets with significant airborne dust – similar to the world portrayed in the classic sci-fi Dune – could be habitable over a greater range of distances from their parent star, therefore increasing the window for planets capable of sustaining life.

The team from the University of Exeter, the Met Office and the University of East Anglia (UEA) isolated three primary impacts of dust.

Planets orbiting close to stars smaller and cooler than the Sun, so-called M–dwarfs, are likely to exist in synchronised rotation-orbit states, resulting in permanent day and night sides.

The researchers found that dust cools down the hotter dayside but also warms the night side, effectively widening the planet’s `habitable zone’, the range of distances from the star where surface water could exist. Detection and characterisation of potentially habitable distant planets is currently most effective for these types of worlds.

The results, published today in Nature Communications, also show that for planets in general, cooling by airborne dust could play a significant role at the inner edge of this habitable zone, where it gets so hot that planets might lose their surface water and become inhabitable – in a scenario thought to have occurred on Venus.


Subscribe to more articles like this by following our Google Discovery feed - Click the follow button on your desktop or the star button on mobile. Subscribe

As water is lost from the planet and its oceans shrink, the amount of dust in the atmosphere can increase and, as a result, cool the planet down. This process is a so-called negative climate feedback, postponing the planet’s loss of its water.

Crucially, the research also suggests that the presence of dust must be accounted for in the search for key biomarkers indicative of life – such as the presence of methane – as it can obscure their signatures as observed by astronomers.

The experts suggest that these results mean exoplanets must be very carefully considered before being potentially rejected in the search for habitable distant worlds.

Dr Ian Boutle, lead author of the study and jointly from the Met Office and the University of Exeter said:” On Earth and Mars, dust storms have both cooling and warming effects on the surface, with the cooling effect typically winning out. But these ‘synchronised orbit’ planets are very different. Here, the dark sides of these planets are in perpetual night, and the warming effect wins out, whereas on the dayside, the cooling effect wins out. The effect is to moderate the temperature extremes, thus making the planet more habitable.”

The presence of mineral dust is known to play a substantial role in climate, both regionally as found on Earth and globally, as experienced on Mars.

The research team performed a series of simulations of terrestrial or Earth-sized exoplanets, using state-of-the-art climate models, and showed for the first time that naturally occurring mineral dust will have a significant impact on whether exoplanets can support life.

Prof Manoj Joshi from UEA said that this study again shows how the possibility of exoplanets supporting life depends not only on the stellar irradiance – or the amount of light energy from the nearest star – but also on the planet’s atmospheric make-up. “Airborne dust is something that might keep planets habitable, but also obscures our ability to find signs of life on these planets. These effects need to be considered in future research.”

The research project included part of an undergraduate project by Duncan Lyster, who features on the paper’s list of authors. Duncan, who now runs his own business crafting surfboards added: “It’s exciting to see the results of the practical research in my final year of study paying off. I was working on a fascinating exoplanet atmosphere simulation project, and was lucky enough to be part of a group who could take it on to the level of world-class research.”

The quest to identify habitable planets far beyond our solar system is an integral part of current and future space missions, many focused on answering the question of whether we are alone.

Nathan Mayne, from the University of Exeter, who along with a co-author was able to work on this project thanks to funding from the Science and Technology Facilities Council (STFC) added: “Research such as this is only possible by crossing disciplines and combing the excellent understanding and techniques developed to study our own planet’s climate, with cutting edge astrophysics.

“To be able to involve undergraduate physics students in this, and other projects, also provides an excellent opportunity for those studying with us to directly develop the skills needed in such technical and collaborative projects.

“With game-changing facilities such as the JWST and E-ELT, becoming available in the near future, and set to provide a huge leap forward in the study of exoplanets, now is a great time to study Physics!”

UNIVERSITY OF EXETER

Header Image Credit : Denis Sergeev/ University of Exeter

- Advertisement -

Download the HeritageDaily mobile application on iOS and Android

More on this topic

LATEST NEWS

Pella – Birthplace of Alexander The Great

Pella is an archaeological site and the historical capital of the ancient kingdom of Macedon.

New Argentine fossils uncover history of celebrated conifer group

Newly unearthed, surprisingly well-preserved conifer fossils from Patagonia, Argentina, show that an endangered and celebrated group of tropical West Pacific trees has roots in the ancient supercontinent that once comprised Australia, Antarctica and South America, according to an international team of researchers.

High-tech CT reveals ancient evolutionary adaptation of extinct crocodylomorphs

The tree of life is rich in examples of species that changed from living in water to a land-based existence.

Fish fossils become buried treasure

Rare metals crucial to green industries turn out to have a surprising origin. Ancient global climate change and certain kinds of undersea geology drove fish populations to specific locations.

Archaeologists Discover Viking Toilet in Denmark

Archaeologists excavating a settlement on the Stevns Peninsula in Denmark suggests they have discovered a toilet from the Viking Age.

Innovation by ancient farmers adds to biodiversity of the Amazon, study shows

Innovation by ancient farmers to improve soil fertility continues to have an impact on the biodiversity of the Amazon, a major new study shows.

Lost Shiva Temple Buried in Sand Discovered by Local Villagers

Villagers from the Perumallapadu village in the Pradesh’s Nellore district of India have unearthed the 300-year-old Temple of Nageswara Swamy on the banks of the Penna River.

Ma’rib – Capital of the Kingdom of Saba

Ma'rib is an archaeological site and former capital of the ancient kingdom of Saba in modern-day Ma'rib in Yemen

Giant Egg Discovered in Antarctica Belonged to Marine Reptile

A large fossil discovered in Antarctica by Chilean researchers in 2011 has been found to be a giant, soft-shell egg from 66 million years ago.

Archaeologists Find Evidence of Incest Among Irelands Early Elite at Newgrange Passage Tomb

Archaeologists working with Geneticists from the Trinity College Dublin have determined that a burial in the Newgrange passage tomb shows indications of first-degree incest.

Popular stories