Date:

To make an atom-sized machine, you need a quantum mechanic

Here’s a new chapter in the story of the miniaturisation of machines: researchers in a laboratory in Singapore have shown that a single atom can function as either an engine or a fridge. Such a device could be engineered into future computers and fuel cells to control energy flows.

“Think about how your computer or laptop has a lot of things inside it that heat up. Today you cool that with a fan that blows air. In nanomachines or quantum computers, small devices that do cooling could be something useful,” says Dario Poletti from the Singapore University of Technology and Design (SUTD).

- Advertisement -

This work gives new insight into the mechanics of such devices. The work is a collaboration involving researchers at the Centre for Quantum Technologies (CQT) and Department of Physics at the National University of Singapore (NUS), SUTD and at the University of Augsburg in Germany. The results were published in the peer-reviewed journal npj Quantum Information on 1 May.

Engines and refrigerators are both machines described by thermodynamics, a branch of science that tells us how energy moves within a system and how we can extract useful work. A classical engine turns energy into useful work. A refrigerator does work to transfer heat, reducing the local temperature. They are, in some sense, opposites.

People have made small heat engines before using a single atom, a single molecule and defects in diamond. A key difference about this device is that it shows quantumness in its action. “We want to understand how we can build thermodynamic devices with just a few atoms. The physics is not well understood so our work is important to know what is possible,” says Manas Mukherjee, a Principal Investigator at CQT, NUS, who led the experimental work.

The researchers studied the thermodynamics of a single barium atom. They devised a scheme in which lasers move one of the atom’s electrons between two energy levels as part of a cycle, causing some energy to be pushed into the atom’s vibrations. Like a car engine consumes petrol to both move pistons and charge up its battery, the atom uses energy from lasers as fuel to increase its vibrating motion. The atom’s vibrations act like a battery, storing energy that can be extracted later. Rearrange the cycle and the atom acts like a fridge, removing energy from the vibrations.

- Advertisement -

In either mode of operation, quantum effects show up in correlations between the atom’s electronic states and vibrations. “At this scale, the energy transfer between the engine and the load is a bit fuzzy. It is no longer possible to simply do work on the load, you are bound to transfer some heat,” says Poletti. He worked out the theory with collaborators Jiangbin Gong at NUS Physics and Peter Hänggi in Augsburg. The fuzziness makes the process less efficient, but the experimentalists could still make it work.

Mukherjee and colleagues Noah Van Horne, Dahyun Yum and Tarun Dutta used a barium atom from which an electron (a negative charge) is removed. This makes the atom positively charged, so it can be more easily held still inside a metal chamber by electrical fields. All other air is removed from around it. The atom is then zapped with lasers to move it through a four-stage cycle.

The researchers measured the atom’s vibration after applying 2 to 15 cycles. They repeated a given number of cycles up to 150 times, measuring on average how much vibrational energy was present at the end. They could see the vibrational energy increasing when the atom was zapped with an engine cycle, and decreasing when the zaps followed the fridge cycle.

Understanding the atom-sized machine involved both complicated calculations and observations. The team needed to track two thermodynamic quantities known as ergotropy, which is the energy that can be converted to useful work, and entropy, which is related to disorder in the system. Both ergotropy and entropy increase as the atom-machine runs. There’s still a simple way of looking at it, says first author and PhD student Van Horne, “Loosely speaking, we’ve designed a little machine that creates entropy as it is filled up with free energy, much like kids when they are given too much sugar.”

CENTRE FOR QUANTUM TECHNOLOGIES AT THE NATIONAL UNIVERSITY OF SINGAPORE

Header Image – Experiments with a single-atom device help researchers understand what quantum effects come into play when machinery shrinks to the atomic scale. Credit : Aki Honda / Centre for Quantum Technologies, National University of Singapore

- Advertisement -

Stay Updated: Follow us on iOS, Android, Google News, Facebook, Instagram, Twitter, Threads, TikTok, LinkedIn, and our newsletter

spot_img
Mark Milligan
Mark Milligan
Mark Milligan is a multi-award-winning journalist and the Managing Editor at HeritageDaily. His background is in archaeology and computer science, having written over 8,000 articles across several online publications. Mark is a member of the Association of British Science Writers (ABSW), the World Federation of Science Journalists, and in 2023 was the recipient of the British Citizen Award for Education, the BCA Medal of Honour, and the UK Prime Minister's Points of Light Award.
spot_img
spot_img

Mobile Application

spot_img

Related Articles

Royal tomb unearthed in Gordion could belong to King Midas’ family

Archaeologists from the Gordion Project have uncovered a Phrygian royal tomb, potentially belonging to a member of King Midas' Family from the 8th century BC.

Bronze Age tombs reveal wealth from ancient trade

The discovery of three Bronze Age tombs at Dromolaxia-Vyzakia has shed light on ancient trade routes connecting Cyprus with the Aegean, Anatolia, Egypt, and the Near East.

Dolphin mosaic discovery is part of an expansive Roman villa complex

Archaeologists from OÖ Landes-Kultur GmbH and the University of Salzburg have uncovered an expansive Roman villa complex on Reinberg hill in Thalheim bei Wels, Austria.

Over 100 prehistoric structures found in Spanish cave

Archaeologists from the University of Alicante and the University of Zaragoza have discovered over 100 prehistoric structures within the Cova Dones cave system in Valencia, Span.

Viking-era treasure hoard among several significant discoveries in Täby

Several significant Viking-era discoveries have been made in Täby, Sweden, where archaeologists from Arkeologerna have uncovered a large silver hoard alongside the remains of an extensive farming settlement.

Lost monuments of the “people of the cloud forest” unearthed at Gran Pajatén

The World Monuments Fund (WMF) has announced the discovery of more than 100 previously undocumented structures at Gran Pajatén, located within Peru’s Río Abiseo National Park.

Experts explain the cultural origin of the mysterious deformed skull

Construction workers in San Fernando, Argentina, recently uncovered a mysterious skull with an unusual, deformed morphology.

1,600-year-old Byzantine mosaic unveiled for the first time

A large Byzantine-era mosaic discovered in 1990 at the edge of Khirbat Be’er Shema, Israel, has been unveiled to the public for the first time.