To make an atom-sized machine, you need a quantum mechanic

Related Articles

Related Articles

Here’s a new chapter in the story of the miniaturisation of machines: researchers in a laboratory in Singapore have shown that a single atom can function as either an engine or a fridge. Such a device could be engineered into future computers and fuel cells to control energy flows.

“Think about how your computer or laptop has a lot of things inside it that heat up. Today you cool that with a fan that blows air. In nanomachines or quantum computers, small devices that do cooling could be something useful,” says Dario Poletti from the Singapore University of Technology and Design (SUTD).

This work gives new insight into the mechanics of such devices. The work is a collaboration involving researchers at the Centre for Quantum Technologies (CQT) and Department of Physics at the National University of Singapore (NUS), SUTD and at the University of Augsburg in Germany. The results were published in the peer-reviewed journal npj Quantum Information on 1 May.

 

Engines and refrigerators are both machines described by thermodynamics, a branch of science that tells us how energy moves within a system and how we can extract useful work. A classical engine turns energy into useful work. A refrigerator does work to transfer heat, reducing the local temperature. They are, in some sense, opposites.

People have made small heat engines before using a single atom, a single molecule and defects in diamond. A key difference about this device is that it shows quantumness in its action. “We want to understand how we can build thermodynamic devices with just a few atoms. The physics is not well understood so our work is important to know what is possible,” says Manas Mukherjee, a Principal Investigator at CQT, NUS, who led the experimental work.

The researchers studied the thermodynamics of a single barium atom. They devised a scheme in which lasers move one of the atom’s electrons between two energy levels as part of a cycle, causing some energy to be pushed into the atom’s vibrations. Like a car engine consumes petrol to both move pistons and charge up its battery, the atom uses energy from lasers as fuel to increase its vibrating motion. The atom’s vibrations act like a battery, storing energy that can be extracted later. Rearrange the cycle and the atom acts like a fridge, removing energy from the vibrations.

In either mode of operation, quantum effects show up in correlations between the atom’s electronic states and vibrations. “At this scale, the energy transfer between the engine and the load is a bit fuzzy. It is no longer possible to simply do work on the load, you are bound to transfer some heat,” says Poletti. He worked out the theory with collaborators Jiangbin Gong at NUS Physics and Peter Hänggi in Augsburg. The fuzziness makes the process less efficient, but the experimentalists could still make it work.

Mukherjee and colleagues Noah Van Horne, Dahyun Yum and Tarun Dutta used a barium atom from which an electron (a negative charge) is removed. This makes the atom positively charged, so it can be more easily held still inside a metal chamber by electrical fields. All other air is removed from around it. The atom is then zapped with lasers to move it through a four-stage cycle.

The researchers measured the atom’s vibration after applying 2 to 15 cycles. They repeated a given number of cycles up to 150 times, measuring on average how much vibrational energy was present at the end. They could see the vibrational energy increasing when the atom was zapped with an engine cycle, and decreasing when the zaps followed the fridge cycle.

Understanding the atom-sized machine involved both complicated calculations and observations. The team needed to track two thermodynamic quantities known as ergotropy, which is the energy that can be converted to useful work, and entropy, which is related to disorder in the system. Both ergotropy and entropy increase as the atom-machine runs. There’s still a simple way of looking at it, says first author and PhD student Van Horne, “Loosely speaking, we’ve designed a little machine that creates entropy as it is filled up with free energy, much like kids when they are given too much sugar.”

CENTRE FOR QUANTUM TECHNOLOGIES AT THE NATIONAL UNIVERSITY OF SINGAPORE

Header Image – Experiments with a single-atom device help researchers understand what quantum effects come into play when machinery shrinks to the atomic scale. Credit : Aki Honda / Centre for Quantum Technologies, National University of Singapore

Download the HeritageDaily mobile application on iOS and Android

More on this topic

LATEST NEWS

Camulodunum – The First Capital of Britannia

Camulodunum was a Roman city and the first capital of the Roman province of Britannia, in what is now the present-day city of Colchester in Essex, England.

African Crocodiles Lived in Spain Six Million Years Ago

Millions of years ago, several species of crocodiles of different genera and characteristics inhabited Europe and sometimes even coexisted.

Bat-Winged Dinosaurs That Could Glide

Despite having bat-like wings, two small dinosaurs, Yi and Ambopteryx, struggled to fly, only managing to glide clumsily between the trees where they lived, according to a new study led by an international team of researchers, including McGill University Professor Hans Larsson.

Ancient Maya Built Sophisticated Water Filters

Ancient Maya in the once-bustling city of Tikal built sophisticated water filters using natural materials they imported from miles away, according to the University of Cincinnati.

New Clues Revealed About Clovis People

There is much debate surrounding the age of the Clovis - a prehistoric culture named for stone tools found near Clovis, New Mexico in the early 1930s - who once occupied North America during the end of the last Ice Age.

Cognitive Elements of Language Have Existed for 40 Million Years

Humans are not the only beings that can identify rules in complex language-like constructions - monkeys and great apes can do so, too, a study at the University of Zurich has shown.

Bronze Age Herders Were Less Mobile Than Previously Thought

Bronze Age pastoralists in what is now southern Russia apparently covered shorter distances than previously thought.

Legio IX Hispana – The Lost Roman Legion

One of the most debated mysteries from the Roman period involves the disappearance of the Legio IX Hispana, a legion of the Imperial Roman Army that supposedly vanished sometime after AD 120.

Popular stories

Legio IX Hispana – The Lost Roman Legion

One of the most debated mysteries from the Roman period involves the disappearance of the Legio IX Hispana, a legion of the Imperial Roman Army that supposedly vanished sometime after AD 120.

The Secret Hellfire Club and the Hellfire Caves

The Hellfire Club was an exclusive membership-based organisation for high-society rakes, that was first founded in London in 1718, by Philip, Duke of Wharton, and several of society's elites.

Port Royal – The Sodom of the New World

Port Royal, originally named Cagway was an English harbour town and base of operations for buccaneers and privateers (pirates) until the great earthquake of 1692.

Matthew Hopkins – The Real Witch-Hunter

Matthew Hopkins was an infamous witch-hunter during the 17th century, who published “The Discovery of Witches” in 1647, and whose witch-hunting methods were applied during the notorious Salem Witch Trials in colonial Massachusetts.