Date:

To make an atom-sized machine, you need a quantum mechanic

Here’s a new chapter in the story of the miniaturisation of machines: researchers in a laboratory in Singapore have shown that a single atom can function as either an engine or a fridge. Such a device could be engineered into future computers and fuel cells to control energy flows.

“Think about how your computer or laptop has a lot of things inside it that heat up. Today you cool that with a fan that blows air. In nanomachines or quantum computers, small devices that do cooling could be something useful,” says Dario Poletti from the Singapore University of Technology and Design (SUTD).

- Advertisement -

This work gives new insight into the mechanics of such devices. The work is a collaboration involving researchers at the Centre for Quantum Technologies (CQT) and Department of Physics at the National University of Singapore (NUS), SUTD and at the University of Augsburg in Germany. The results were published in the peer-reviewed journal npj Quantum Information on 1 May.

Engines and refrigerators are both machines described by thermodynamics, a branch of science that tells us how energy moves within a system and how we can extract useful work. A classical engine turns energy into useful work. A refrigerator does work to transfer heat, reducing the local temperature. They are, in some sense, opposites.

People have made small heat engines before using a single atom, a single molecule and defects in diamond. A key difference about this device is that it shows quantumness in its action. “We want to understand how we can build thermodynamic devices with just a few atoms. The physics is not well understood so our work is important to know what is possible,” says Manas Mukherjee, a Principal Investigator at CQT, NUS, who led the experimental work.

The researchers studied the thermodynamics of a single barium atom. They devised a scheme in which lasers move one of the atom’s electrons between two energy levels as part of a cycle, causing some energy to be pushed into the atom’s vibrations. Like a car engine consumes petrol to both move pistons and charge up its battery, the atom uses energy from lasers as fuel to increase its vibrating motion. The atom’s vibrations act like a battery, storing energy that can be extracted later. Rearrange the cycle and the atom acts like a fridge, removing energy from the vibrations.

- Advertisement -

In either mode of operation, quantum effects show up in correlations between the atom’s electronic states and vibrations. “At this scale, the energy transfer between the engine and the load is a bit fuzzy. It is no longer possible to simply do work on the load, you are bound to transfer some heat,” says Poletti. He worked out the theory with collaborators Jiangbin Gong at NUS Physics and Peter Hänggi in Augsburg. The fuzziness makes the process less efficient, but the experimentalists could still make it work.

Mukherjee and colleagues Noah Van Horne, Dahyun Yum and Tarun Dutta used a barium atom from which an electron (a negative charge) is removed. This makes the atom positively charged, so it can be more easily held still inside a metal chamber by electrical fields. All other air is removed from around it. The atom is then zapped with lasers to move it through a four-stage cycle.

The researchers measured the atom’s vibration after applying 2 to 15 cycles. They repeated a given number of cycles up to 150 times, measuring on average how much vibrational energy was present at the end. They could see the vibrational energy increasing when the atom was zapped with an engine cycle, and decreasing when the zaps followed the fridge cycle.

Understanding the atom-sized machine involved both complicated calculations and observations. The team needed to track two thermodynamic quantities known as ergotropy, which is the energy that can be converted to useful work, and entropy, which is related to disorder in the system. Both ergotropy and entropy increase as the atom-machine runs. There’s still a simple way of looking at it, says first author and PhD student Van Horne, “Loosely speaking, we’ve designed a little machine that creates entropy as it is filled up with free energy, much like kids when they are given too much sugar.”

CENTRE FOR QUANTUM TECHNOLOGIES AT THE NATIONAL UNIVERSITY OF SINGAPORE

Header Image – Experiments with a single-atom device help researchers understand what quantum effects come into play when machinery shrinks to the atomic scale. Credit : Aki Honda / Centre for Quantum Technologies, National University of Singapore

- Advertisement -
spot_img
Mark Milligan
Mark Milligan
Mark Milligan is multi-award-winning journalist and the Managing Editor at HeritageDaily. His background is in archaeology and computer science, having written over 7,500 articles across several online publications. Mark is a member of the Association of British Science Writers (ABSW), the World Federation of Science Journalists, and in 2023 was the recipient of the British Citizen Award for Education, the BCA Medal of Honour, and the UK Prime Minister's Points of Light Award.
spot_img
spot_img

Mobile Application

spot_img

Related Articles

Stone box containing rare ceremonial offerings discovered at Tlatelolco

Archaeologists from the National Institute of Anthropology and History (INAH) have discovered a stone box containing ceremonial offerings during excavations of Temple "I", also known as the Great Basement, at the Tlatelolco archaeological zone.

Excavation uncovers traces of the first bishop’s palace at Merseburg Cathedral Hill

Archaeologists from the State Office for Monument Preservation and Archaeology (LDA) Saxony-Anhalt have uncovered traces of the first bishop’s palace at the southern end of the Merseburg Cathedral Hill in Merseburg, Germany.

BU archaeologists uncover Iron Age victim of human sacrifice

Archaeologists from Bournemouth University have uncovered an Iron Age victim of human sacrifice in Dorset, England.

Archaeologists find ancient papyri with correspondence made by Roman centurions

Archaeologists from the University of Wrocław have uncovered ancient papyri that contains the correspondence of Roman centurions who were stationed in Egypt.

Study indicates that Firth promontory could be an ancient crannog

A study by students from the University of the Highlands and Islands has revealed that a promontory in the Loch of Wasdale in Firth, Orkney, could be the remains of an ancient crannog.

Archaeologists identify the original sarcophagus of Ramesses II

Archaeologists from Sorbonne University have identified the original sarcophagus of Ramesses II, otherwise known as Ramesses the Great.

Archaeologists find missing head of Deva from the Victory Gate of Angkor Thom

Archaeologists from Cambodia’s national heritage authority (APSARA) have discovered the long-lost missing head of a Deva statue from the Victory Gate of Angkor Thom.

Archaeologists search crash site of WWII B-17 for lost pilot

Archaeologists from Cotswold Archaeology are excavating the crash site of a WWII B-17 Flying Fortress in an English woodland.