Oceanographic conditions influence the origin of new species of sharks and rays

Related Articles

Related Articles

Scientists used to think that the processes that drive the evolution of a new species were geographic separation or spatial barriers.

A new study of elasmobranchs (the group of sharks and rays) has challenged this expectation – and found evolution is happening faster than many think.

Flinders University evolutionary biologists Dr Jonathan Sandoval-Castillo and Professor Luciano Beheregaray tested how different oceanographic conditions in the Gulf of California and the Baja California Peninsula (Mexico) influenced the formation of new species of guitarfish (genus Pseudobatos).

 

The team discovered four types, or ‘young species’, of guitarfish that have similar external appearance but are genetically different.

Each type of guitarfish appears to have adapted to one of the four separate regions of the Gulf of California. This promotes environmental tolerances which result in those guitarfish having improved odds for survival and reproduction in the region where they were born.

“We have shown that these four guitarfish species evolved quite quickly from the same common ancestor,” says Dr Jonathan Sandoval-Castillo.

“The process where several new species originate from one ancestor in a relatively short period of time is called adaptive radiation, and this is the first report of such a process in sharks and rays. Our results help changing the false popular belief that sharks and rays do not evolve, or only evolve very slowly,” says Prof Luciano Beheregaray.

These findings also have important implications for the management of exploited elasmobranch species, such as guitarfish in the Gulf of California which represents an important fishery for Mexico.

If these young species adapt and evolve to their local habitat conditions, they cannot be replaced by migrants from other habitats.

“If such species are incorrectly managed as a single stock, it can result in the over-exploitation and possibly extinction of the entire species.”

FLINDERS UNIVERSITY

Header Image Credit  – Public Domain

Download the HeritageDaily mobile application on iOS and Android

More on this topic

LATEST NEWS

Giant Sand Worm Discovery Proves Truth is Stranger Than Fiction

Simon Fraser University researchers have found evidence that large ambush-predatory worms--some as long as two metres--roamed the ocean floor near Taiwan over 20 million years ago.

Burial Practices Point to an Interconnected Early Medieval Europe

Early Medieval Europe is frequently viewed as a time of cultural stagnation, often given the misnomer of the 'Dark Ages'. However, analysis has revealed new ideas could spread rapidly as communities were interconnected, creating a surprisingly unified culture in Europe.

New Starfish-Like Fossil Reveals Evolution in Action

Researchers from the University of Cambridge have discovered a fossil of the earliest starfish-like animal, which helps us understand the origins of the nimble-armed creature.

Mars Crater Offers Window on Temperatures 3.5 Billion Years Ago

Once upon a time, seasons in Gale Crater probably felt something like those in Iceland. But nobody was there to bundle up more than 3 billion years ago.

Early Humans Used Chopping Tools to Break Animal Bones & Consume the Bone Marrow

Researchers from the Sonia and Marco Nadler Institute of Archaeology at Tel Aviv University unraveled the function of flint tools known as 'chopping tools', found at the prehistoric site of Revadim, east of Ashdod.

50 Million-Year-Old Fossil Assassin Bug Has Unusually Well-Preserved Genitalia

The fossilized insect is tiny and its genital capsule, called a pygophore, is roughly the length of a grain of rice.

Dinosaur-Era Sea Lizard Had Teeth Like a Shark

New study identifies a bizarre new species suggesting that giant marine lizards thrived before the asteroid wiped them out 66 million years ago.

The Iron Age Tribes of Britain

The British Iron Age is a conventional name to describe the independent Iron Age cultures that inhabited the mainland and smaller islands of present-day Britain.

Popular stories

The Iron Age Tribes of Britain

The British Iron Age is a conventional name to describe the independent Iron Age cultures that inhabited the mainland and smaller islands of present-day Britain.

The Roman Conquest of Wales

The conquest of Wales began in either AD 47 or 48, following the landing of Roman forces in Britannia sent by Emperor Claudius in AD 43.

Vallum Antonini – The Antonine Wall

The Antonine Wall (Vallum Antonini) was a defensive wall built by the Romans in present-day Scotland, that ran for 39 miles between the Firth of Forth, and the Firth of Clyde (west of Edinburgh along the central belt).

Vallum Aulium – Hadrian’s Wall

Hadrian’s Wall (Vallum Aulium) was a defensive fortification in Roman Britannia that ran 73 miles (116km) from Mais at the Solway Firth on the Irish Sea to the banks of the River Tyne at Segedunum at Wallsend in the North Sea.