Changes in climate thousands of years ago caused the evolution of new rice varieties

Related Articles

Related Articles

New research suggests that a global cooling event that occurred 4200 years ago, led to the evolution of new rice varieties and its expansion across Asia.

The study was conducted by the NYU Centre for Genomics, using a multidisciplinary approach to trace the migration of rice across Asia and reconstruct the associated history. The researchers applied whole-genome sequences of 1400 varities of rice, including japonica and indica, two main subspecies of Asian rice – coupled with geography, archaeology, and historical climate data.

Rice is one of the most important crops worldwide, a staple for more than half of the global population. It was first cultivated 9,000 years ago in the Yangtze Valley in China and later spread across East, Southeast, and South Asia, followed by the Middle East, Africa, Europe, and the Americas. In the process, rice evolved and adapted to different environments, but little is known about the routes, timing, and environmental forces involved in this spread.

 

For the first 4,000 years of its history, farming rice was largely confined to China, and japonica was the subspecies grown. Then, a global cooling event 4,200 years ago–also known as the 4.2k event, which is thought to have had widespread consequences, including the collapse of civilizations from Mesopotamia to China–coincided with japonica rice diversifying into temperate and tropical varieties. The newly evolved temperate varieties spread in northern China, Korea and Japan, while the tropical varieties and spread to Southeast Asia.

“This abrupt climate change forced plants, including crops, to adapt,” said Rafal M. Gutaker, a postdoctoral associate at the NYU Center for Genomics and Systems Biology and the study’s lead author. “Our genomic data, as well as paleoclimate modeling by our collaborators, show that the cooling event occurred at the same time as the rise of temperate japonica, which grows in milder regions. This cooling event also may have led to the migration of rice agriculture and farmer communities into Southeast Asia.”

“These findings were then backed up by data from archaeological rice remains excavated in Asia, which also showed that after the 4.2k event, tropical rice migrated south while rice also adapted to northern latitudes as temperate varieties,” said Michael D. Purugganan, the Silver Professor of Biology at NYU, who led the study.

After the global cooling event, tropical japonica rice continued to diversify. It reached islands in Southeast Asia about 2,500 years ago, likely due to extensive trade networks and the movement of goods and peoples in the region–a finding also supported by archeological data.

The spread of indica rice was more recent and more complicated; after originating in India’s lower Ganges Valley roughly 4,000 years ago, the researchers traced its migration from India into China approximately 2,000 years ago.

While the researchers had thought that rainfall and water would be the most limiting environmental factor in rice diversity, they found temperature to be the key factor instead. Their analyses revealed that heat accumulation and temperature were very strongly associated with the genomic differences between tropical and temperate japonica rice varieties.

“This study illustrates the value of multidisciplinary research. Our genomic data gave us a model for where and when rice spread to different parts of Asia, archaeology told us when and where rice showed up at various places, and the environmental and climate modeling gave us the ecological context,” said Purugganan. “Together, this approach allows us to write a first draft of the story of how rice dispersed across Asia.”

Understanding the spread of rice and the related environmental pressures could also help scientists develop new varieties that meet future environmental challenges, such as climate change and drought–which could help address looming food security issues.

“Armed with knowledge of the pattern of rice dispersal and environmental factors that influenced its migration, we can examine the evolutionary adaptations of rice as it spread to new environments, which could allow us to identify traits and genes to help future breeding efforts,” said Gutaker.

The research at NYU was supported by the Zegar Family Foundation and the National Science Foundation Plant Genome Research Program (IOS-1546218).

NEW YORK UNIVERSITY

Header Image Credit – Public Domain

Download the HeritageDaily mobile application on iOS and Android

More on this topic

LATEST NEWS

The Great Wall of Gorgan

The Great Wall of Gorgan, also called the "The Red Snake" or “Alexander's Barrier” is the second-longest defensive wall (after the Great Wall of China), which ran for 121 miles from a narrowing between the Caspian Sea north of Gonbade Kavous (ancient Gorgan, or Jorjan in Arabic) and the Pishkamar mountains of north-eastern Iran.

Aelia Capitolina – Roman Jerusalem

Aelia Capitolina was a Roman colony, constructed after the siege of 70 AD during the First Jewish-Roman War, when the city of Jerusalem and the Second Temple on Temple Mount was destroyed.

Wild Birds as Offerings to the Egyptian Gods

Millions of ibis and birds of prey mummies, sacrificed to the Egyptian gods Horus, Ra or Thoth, have been discovered in the necropolises of the Nile Valley.

Karahundj – The Ancient Speaking Stones

Karahundj, also called Carahunge and Zorats Karer is an ancient stone complex, constructed on a mountain plateau in the Syunik Province of Armenia.

Palaeontologists Establish Spinosaurus Was Real Life ‘River Monster’

A discovery of more than a thousand dinosaur teeth, by a team of researchers from the University of Portsmouth, proves beyond reasonable doubt that Spinosaurus, the giant predator made famous by the movie Jurassic Park III as well as the BBC documentary Planet Dinosaur was an enormous river-monster.

Archaeology Uncovers Infectious Disease Spread – 4000 Years Ago

New bioarchaeology research from a University of Otago PhD candidate has shown how infectious diseases may have spread 4000 years ago, while highlighting the dangers of letting such diseases run rife.

Buhen – The Sunken Egyptian Fortress

Buhen was an ancient Egyptian settlement and fortress, located on the West bank of the Nile in present-day Sudan.

The Modhera Sun Temple

The Sun Temple is an ancient Hindu temple complex located on a latitude of 23.6° (near Tropic of Cancer) on the banks of the Pushpavati river at Modhera in Gujarat, India.

Popular stories

The Secret Hellfire Club and the Hellfire Caves

The Hellfire Club was an exclusive membership-based organisation for high-society rakes, that was first founded in London in 1718, by Philip, Duke of Wharton, and several of society's elites.

Port Royal – The Sodom of the New World

Port Royal, originally named Cagway was an English harbour town and base of operations for buccaneers and privateers (pirates) until the great earthquake of 1692.

Matthew Hopkins – The Real Witch-Hunter

Matthew Hopkins was an infamous witch-hunter during the 17th century, who published “The Discovery of Witches” in 1647, and whose witch-hunting methods were applied during the notorious Salem Witch Trials in colonial Massachusetts.

Did Corn Fuel Cahokia’s Rise?

A new study suggests that corn was the staple subsistence crop that allowed the pre-Columbian city of Cahokia to rise to prominence and flourish for nearly 300 years.