Date:

When fish gave us the finger: this ancient four-limbed fish reveals the origins of the human hand

One of the most significant events in the history of life was when fish evolved into tetrapods, crawling out of the water and eventually conquering land. The term tetrapod refers to four-limbed vertebrates, including humans.

To complete this transition, several anatomical changes were necessary. One of the most important was the evolution of hands and feet.

- Advertisement -

Working with researchers from the University of Quebec, in 2010 we discovered the first complete specimen of Elpistostege watsoni. This tetrapod-like fish lived more than 380-million-years ago, and belonged to a group called elpistostegalians.

Our research based on this specimen, published today in Nature, suggests human hands likely evolved from the fins of this fish, which we’ll refer to by its genus name, Elpistostege.

Elpistostegalians are an extinct group that displayed features of both lobe-finned fish and early tetrapods. They were likely involved in bridging the gap between prehistoric fish and animals capable of living on land.

Thus, our latest finding offers valuable insight into the evolution of the vertebrate hand.

- Advertisement -

The best specimen we’ve ever found

To understand how fish fins became limbs (arms and legs with digits) through evolution, we studied the fossils of extinct lobe-finned fishes and early tetrapods.

Lobe-fins include bony fishes (Osteichthyes) with robust fins, such as lungfishes and coelacanths.

Prior to this, the most complete elpistostegalian specimen was a Tiktaalik roseae skeleton found in the Canadian Arctic in 2004, but it was missing the extreme-end part of its fin.

When fins became limbs

The origin of digits in land vertebrates is hotly debated.

The tiny bones in the tip of the pectoral fins of fishes such as Elpistostege are called “radial” bones. When radials form a series of rows, like digits, they are essentially the same as fingers in tetrapods.

The only difference is that, in these advanced fishes, the digits are still locked within the fin, and not yet free moving like human fingers.

Our recently uncovered Elpistostege specimen reveals the presence of a humerus (arm), radius and ulna (forearm), rows of carpal bones (wrist) and smaller bones organised in discrete rows.

We believe this is the first evidence of digit bones found in a fish fin with fin-rays (the bony rays that support the fin). This suggests the fingers of vertebrates, including of human hands, first evolved as rows of digit bones in the fins of Elpistostegalian fishes.

What’s the evolutionary advantage?

From an evolutionary perspective, rows of digit bones in prehistoric fish fins would have provided flexibility for the fin to more effectively bear weight.

This could have been useful when Elpistostege was either plodding along in the shallows, or trying to move out of water onto land. Eventually, the increased use of such fins would have lead to the loss of fin-rays and the emergence of digits in rows, forming a larger surface area for the limb to grip the land surface.

Our specimen shows many features not known before, and will form the basis of a series of future papers describing in detail its skull, and other aspects of its body skeleton.

Elpistostege blurs the line between fish and vertebrates capable of living on land. It’s not necessarily our ancestor, but it’s now the closest example we have of a “transitional fossil”, closing the gap between fish and tetrapods.

The full picture

The first Elpistostege fossil, a skull fragment, was found in the late 1930s. It was thought to belong to an early amphibian. In the mid 1980s the front half of the skull was found, and was confirmed to be an advanced lobe-finned fish.

Our new, complete specimen was discovered in the fossil-rich cliffs of the Miguasha National Park, a UNESCO World Heritage site in Eastern Canada. Miguasha is considered one of the best sites to study fish fossils from the Devonian period (known as the “Age of Fish”), as it contains a very large number of lobe-finned fish fossils, in an exceptional state of preservation.

Written by :

Strategic Professor in Palaeontology, Flinders University

Professor of Evolutionary Biology, Université du Québec à Rimouski, Université du Québec à Rimouski (UQAR)

The Conversation

Header Image Credit : Ghedoghedo

The Conversation

- Advertisement -
spot_img
Mark Milligan
Mark Milligan
Mark Milligan is multi-award-winning journalist and the Managing Editor at HeritageDaily. His background is in archaeology and computer science, having written over 7,500 articles across several online publications. Mark is a member of the Association of British Science Writers (ABSW), the World Federation of Science Journalists, and in 2023 was the recipient of the British Citizen Award for Education, the BCA Medal of Honour, and the UK Prime Minister's Points of Light Award.
spot_img

Mobile Application

spot_img
spot_img

Related Articles

Archaeologists uncover 4,200-year-old “zombie grave”

Archaeologists from the State Office for Monument Preservation and Archaeology Saxony-Anhalt have uncovered a "zombie grave" during excavations near Oppin, Germany.

Archaeologists uncover 2,000-year-old clay token used by pilgrims

A clay token unearthed by the Temple Mount Sifting Project, is believed to have served pilgrims exchanging offerings during the Passover festival 2,000-years-ago.

Moon may have influenced Stonehenge construction

A study by a team of archaeoastronomers are investigating the possible connection of the moon in influencing the Stonehenge builders.

Archaeologists explore the resettlement history of the Iron-Age metropolis of Tel Hazor

Archaeologists are conducting a study of the Iron-Age metropolis of Tel Hazor to understand how one of the largest “megacities” of the Bronze Age was abandoned and then resettled.

Excavation uncovers possible traces of Villa Augustus at Somma Vesuviana

Archaeologists from the University of Tokyo have uncovered further evidence of the Villa of Augustus during excavations at Somma Vesuviana.

Study reveals new insights into wreck of royal flagship Gribshunden

Underwater archaeologists from Södertörn University, in collaboration with the CEMAS/Institute for Archaeology and Ancient Culture at Stockholm University, have conducted an investigation of the wreck of the royal flagship Gribshunden.

Microbe X-32 – Is the Plasticene Era coming to an end?

Breaking, a new venture in collaboration with Harvard and the Wyss Institute, is claiming that a new discovery, Microbe X-32, can naturally break down polyolefins, polyesters, and polyamides in just 22 months.

Stone sphere among artefacts repatriated to Costa Rica

395 pre-Columbian artefacts have been repatriated to Costa Rica thanks to a grant by the United States Embassy to the Cultural Agreements Fund.